Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conaway Lab Identifies Novel Mechanism for Regulation of Gene Expression

30.09.2008
The Stowers Institute’s Conaway Lab has demonstrated that an enzyme called Uch37 is kept in check when it is part of a human chromatin remodeling complex, INO80. The results were published in today’s issue of Molecular Cell.

Uch37 is a “deubiquitinating enzyme” that can remove protein tags (called ubiquitin) from other proteins. The presence of one kind of ubiquitin tag on a protein can mark it for destruction, but others serve as marks to affect the activity of a protein. INO80 is a chromatin remodeling complex that is believed to function in both gene regulation and DNA repair by “unpacking” DNA from nucleosomes to allow access to chromosomal DNA.

Previously, the Conaway Lab demonstrated that Uch37 is associated with another multiprotein complex, the proteasome — a large protein complex that degrades unneeded or damaged proteins. In the new paper, the team shows that when bound to INO80, Uch37 can also be activated in the presence of proteasomes. Although the mechanism involved isn’t totally clear, it seems to occur via a “touch and go” mechanism, in which proteasomes interact transiently with Uch37.

“Our findings suggest that activation of INO80-associated Uch37 by transient association of proteasomes with the INO80 complex could be one way proteasomes help to regulate gene expression,” said Tingting Yao, Ph.D., Postdoctoral Research Fellow and lead author on the paper.

“Tingting's discovery of communication between INO80 and the proteasome provides new clues into the functions of both of these regulatory complexes,” said Joan Conaway, Ph.D., Investigator and senior author on the paper. “In addition, it provides new insights into how deubiquitinating enzymes can be regulated — the ability to regulate these enzymes is very important because promiscuous removal of ubiquitin marks could lead to a failure to regulate properly the activities or levels of key enzymes and proteins in cells.”

The ultimate goal of the Conaway Lab is to understand how genes are turned on and off during transcription and how regulation of chromatin structure contributes to this process. Proper gene regulation is key for normal development and functioning of all organisms, including humans. Misregulation of gene expression can contribute to many diseases.

Additional contribution authors from the Stowers Institute include Jingji Jin, Ph.D., Senior Research Associate; Yong Cai, Ph.D., Research Specialist I; Hidehisa Takahashi, Ph.D., Postdoctoral Research Associate; Selene Swanson, Research Specialist II; Michael Washburn, Ph.D., Director of Proteomics; Laurence Florens, Ph.D., Managing Director of Proteomics; and Ron Conaway, Ph.D., Investigator. Contributing authors from other institutions include Ling Song, Ph.D., Carver College of Medicine, University of Iowa; and Robert Cohen, Ph.D., Bloomberg School of Public Health, Johns Hopkins University.

Drs. Joan and Ron Conaway hold faculty appointments in the Department of Biochemistry & Molecular Biology at The University of Kansas School of Medicine. Learn more about their work at www.stowers-institute.org/labs/ConawayLab.asp.

About the Stowers Institute
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>