Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Herbicides and Fibrate Drugs Block Nutrient-sensing ‘Taste’ Receptor Found in Gut and Pancreas

13.10.2009
According to new research from the Monell Center and the Mount Sinai School of Medicine, certain common herbicides and lipid-lowering fibrate drugs act in humans to block T1R3, a nutrient-sensing taste receptor also present in intestine and pancreas.

Commonly used in agriculture and medicine, these chemical compounds were not previously known to act on the T1R3 receptor.

The T1R3 receptor is a critical component of both the sweet taste receptor and the umami (amino acid) taste receptor. First identified on the tongue, emerging evidence indicates that T1R3 and related taste receptors also are located on hormone-producing cells in the intestine and pancreas.

These internal taste receptors detect nutrients in the gut and trigger the release of hormones involved in the regulation of glucose homeostasis and energy metabolism.

“Compounds that either activate or block T1R3 receptors could have significant metabolic effects, potentially influencing diseases such as obesity, type II diabetes and metabolic syndrome,” noted Monell geneticist and study leader Bedrich Mosinger, M.D., Ph.D.

In the study, published online in the Journal of Medicinal Chemistry, researchers tested the ability of two classes of chemical compounds to block the T1R3 receptor. The compounds – fibrates and phenoxy-herbicides – were selected based on their strong structural similarity to lactisole, a sweet taste inhibitor that exerts its taste effects by blocking T1R3.

Fibrates are a class of drugs frequently used to treat lipid disorders such as high blood cholesterol and triglycerides. Phenoxy-herbicides are used in agriculture to control broad-leaf weeds; the best known, 2,4-D, is one of the most extensively used herbicides worldwide.

Using an in vitro preparation, the researchers found that both classes of compounds potently blocked activation of the human sweet taste receptor, acting at micromolar concentrations to inhibit binding of sugars to the T1R3 component of the receptor.

Additional testing revealed that the inhibitory effect of both fibrates and phenoxy-herbicides on the T1R3 receptor is specific to humans. That is, the ability of these compounds to block the receptor did not generalize across species to the rodent form of the receptor.

Mosinger commented on the implications of the findings and noted the importance of testing chemicals intended for human use on human tissues. “The metabolic consequences of short- and long-term exposures of humans to phenoxy-herbicides are unknown. This is because most safety tests were done using animals, which have T1R3 receptors that are insensitive to these compounds,” he said.

The ability of fibrate drugs to interact with T1R3 receptors also was previously unknown. The study findings suggest that these receptors might be an important pharmacological target of first-generation fibrates, such as clofibrate, which were believed to act on a different receptor to affect lipid metabolism. Newer fibrate drugs are more specific for the second receptor and interact less with the T1R3 receptor.

Mosinger points out that little is known about how T1R3 blockade affects hormone levels and metabolism. “Given the number of compounds used in agriculture, medicine and the food industry that may affect human T1R3 and related receptors, more work is needed to identify the health-related effects of exposure to these compounds,” he said.

Also contributing to the study were first author Emeline Maillet from the Department of Neuroscience at Mount Sinai School of Medicine and co-author Robert Margolskee of Monell.

Funding was provided by the National Institute on Deafness and Other Communication Disorders and the National Institute of Diabetes and Digestive and Kidney Diseases.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>