Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Herbicides and Fibrate Drugs Block Nutrient-sensing ‘Taste’ Receptor Found in Gut and Pancreas

13.10.2009
According to new research from the Monell Center and the Mount Sinai School of Medicine, certain common herbicides and lipid-lowering fibrate drugs act in humans to block T1R3, a nutrient-sensing taste receptor also present in intestine and pancreas.

Commonly used in agriculture and medicine, these chemical compounds were not previously known to act on the T1R3 receptor.

The T1R3 receptor is a critical component of both the sweet taste receptor and the umami (amino acid) taste receptor. First identified on the tongue, emerging evidence indicates that T1R3 and related taste receptors also are located on hormone-producing cells in the intestine and pancreas.

These internal taste receptors detect nutrients in the gut and trigger the release of hormones involved in the regulation of glucose homeostasis and energy metabolism.

“Compounds that either activate or block T1R3 receptors could have significant metabolic effects, potentially influencing diseases such as obesity, type II diabetes and metabolic syndrome,” noted Monell geneticist and study leader Bedrich Mosinger, M.D., Ph.D.

In the study, published online in the Journal of Medicinal Chemistry, researchers tested the ability of two classes of chemical compounds to block the T1R3 receptor. The compounds – fibrates and phenoxy-herbicides – were selected based on their strong structural similarity to lactisole, a sweet taste inhibitor that exerts its taste effects by blocking T1R3.

Fibrates are a class of drugs frequently used to treat lipid disorders such as high blood cholesterol and triglycerides. Phenoxy-herbicides are used in agriculture to control broad-leaf weeds; the best known, 2,4-D, is one of the most extensively used herbicides worldwide.

Using an in vitro preparation, the researchers found that both classes of compounds potently blocked activation of the human sweet taste receptor, acting at micromolar concentrations to inhibit binding of sugars to the T1R3 component of the receptor.

Additional testing revealed that the inhibitory effect of both fibrates and phenoxy-herbicides on the T1R3 receptor is specific to humans. That is, the ability of these compounds to block the receptor did not generalize across species to the rodent form of the receptor.

Mosinger commented on the implications of the findings and noted the importance of testing chemicals intended for human use on human tissues. “The metabolic consequences of short- and long-term exposures of humans to phenoxy-herbicides are unknown. This is because most safety tests were done using animals, which have T1R3 receptors that are insensitive to these compounds,” he said.

The ability of fibrate drugs to interact with T1R3 receptors also was previously unknown. The study findings suggest that these receptors might be an important pharmacological target of first-generation fibrates, such as clofibrate, which were believed to act on a different receptor to affect lipid metabolism. Newer fibrate drugs are more specific for the second receptor and interact less with the T1R3 receptor.

Mosinger points out that little is known about how T1R3 blockade affects hormone levels and metabolism. “Given the number of compounds used in agriculture, medicine and the food industry that may affect human T1R3 and related receptors, more work is needed to identify the health-related effects of exposure to these compounds,” he said.

Also contributing to the study were first author Emeline Maillet from the Department of Neuroscience at Mount Sinai School of Medicine and co-author Robert Margolskee of Monell.

Funding was provided by the National Institute on Deafness and Other Communication Disorders and the National Institute of Diabetes and Digestive and Kidney Diseases.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>