Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Switches: From the RNA World to the “Modern” Protein World

07.02.2012
Heidelberg scientists discover the molecular mechanism of a G protein family

G proteins play a central role in cellular signal processing. They are described as molecular switches that oscillate between ‘on’ and ‘off’, regulated by effectors. Biochemists at Heidelberg University have now gained fundamental insights into the mechanics of these switches.

By studying the flagella, the organelles of locomotion in bacteria, researchers were able to identify an effector that turns a specific G protein ‘off’. They succeeded in visualising this process through X-ray crystallography. Their research results also provide insight into the evolution from the world of RNA to the “modern” world of proteins.

Bacteria need to be mobile to react to environmental changes, and in the case of pathogens, to reach the site of infection. Flagella are the organelles of locomotion in bacteria and the tiniest motors in the biosphere. When cells divide, the exact position of the new flagellum needs to be determined each time. The G protein FlhF is responsible for that task. FlhF is a molecular switch that apparently needed no effectors. “In our study, however, we identified a protein that assumes the effector role and were able to describe its mode of action, thereby fundamentally altering this previously held view”, explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center.

The G protein FlhF, together with a signal sequence binding protein (SRP54) and its receptor (FtsY), constitutes the ancient family of SRP-GTPases, which consists solely of these three proteins and is responsible for the transport of proteins in or through a biological membrane. In all known organisms, SRP54 and FtsY regulate the transport of proteins using the signal recognition particle (SRP). Although the SRP system is already well understood, it was recently demonstrated that the protein SRP54 and the receptor FtsY interact with the SRP RNA in a way reminiscent of FlhF and its newly discovered effector.

“Our study of the G protein FlhF not only offers an explanation for the FlhF effector complex, it also integrates this knowledge into a general concept of SRP-GTPase activation through RNA or proteins”, says Dr. Gert Bange of the Heidelberg University Biochemistry Center. “We used FlhF to demonstrate how the ‘modern’ protein world replaced the original RNA world by means of a strikingly simple modification.” The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
G. Bange, N. Kümmerer, P. Grudnik, R. Lindner, G. Petzold, D. Kressler, E. Hurt, K. Wild, I. Sinning:
Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat Struct Mol Biol. 2011, 18(12):1376-80. doi: 10.1038/nsmb.2141

Contact:
Prof. Dr. Irmgard Sinning / Dr. Gert Bange
Heidelberg University Biochemistry Center
phone: +49 6221 54-4780
irmi.sinning@bzh.uni-heidelberg.de
gert.bange@bzh.uni-heidelberg.de

Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>