Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular Switches: From the RNA World to the “Modern” Protein World

Heidelberg scientists discover the molecular mechanism of a G protein family

G proteins play a central role in cellular signal processing. They are described as molecular switches that oscillate between ‘on’ and ‘off’, regulated by effectors. Biochemists at Heidelberg University have now gained fundamental insights into the mechanics of these switches.

By studying the flagella, the organelles of locomotion in bacteria, researchers were able to identify an effector that turns a specific G protein ‘off’. They succeeded in visualising this process through X-ray crystallography. Their research results also provide insight into the evolution from the world of RNA to the “modern” world of proteins.

Bacteria need to be mobile to react to environmental changes, and in the case of pathogens, to reach the site of infection. Flagella are the organelles of locomotion in bacteria and the tiniest motors in the biosphere. When cells divide, the exact position of the new flagellum needs to be determined each time. The G protein FlhF is responsible for that task. FlhF is a molecular switch that apparently needed no effectors. “In our study, however, we identified a protein that assumes the effector role and were able to describe its mode of action, thereby fundamentally altering this previously held view”, explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center.

The G protein FlhF, together with a signal sequence binding protein (SRP54) and its receptor (FtsY), constitutes the ancient family of SRP-GTPases, which consists solely of these three proteins and is responsible for the transport of proteins in or through a biological membrane. In all known organisms, SRP54 and FtsY regulate the transport of proteins using the signal recognition particle (SRP). Although the SRP system is already well understood, it was recently demonstrated that the protein SRP54 and the receptor FtsY interact with the SRP RNA in a way reminiscent of FlhF and its newly discovered effector.

“Our study of the G protein FlhF not only offers an explanation for the FlhF effector complex, it also integrates this knowledge into a general concept of SRP-GTPase activation through RNA or proteins”, says Dr. Gert Bange of the Heidelberg University Biochemistry Center. “We used FlhF to demonstrate how the ‘modern’ protein world replaced the original RNA world by means of a strikingly simple modification.” The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
G. Bange, N. Kümmerer, P. Grudnik, R. Lindner, G. Petzold, D. Kressler, E. Hurt, K. Wild, I. Sinning:
Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat Struct Mol Biol. 2011, 18(12):1376-80. doi: 10.1038/nsmb.2141

Prof. Dr. Irmgard Sinning / Dr. Gert Bange
Heidelberg University Biochemistry Center
phone: +49 6221 54-4780

Communications and Marketing
Press Office
phone: +49 6221 542311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>