Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Switches: From the RNA World to the “Modern” Protein World

07.02.2012
Heidelberg scientists discover the molecular mechanism of a G protein family

G proteins play a central role in cellular signal processing. They are described as molecular switches that oscillate between ‘on’ and ‘off’, regulated by effectors. Biochemists at Heidelberg University have now gained fundamental insights into the mechanics of these switches.

By studying the flagella, the organelles of locomotion in bacteria, researchers were able to identify an effector that turns a specific G protein ‘off’. They succeeded in visualising this process through X-ray crystallography. Their research results also provide insight into the evolution from the world of RNA to the “modern” world of proteins.

Bacteria need to be mobile to react to environmental changes, and in the case of pathogens, to reach the site of infection. Flagella are the organelles of locomotion in bacteria and the tiniest motors in the biosphere. When cells divide, the exact position of the new flagellum needs to be determined each time. The G protein FlhF is responsible for that task. FlhF is a molecular switch that apparently needed no effectors. “In our study, however, we identified a protein that assumes the effector role and were able to describe its mode of action, thereby fundamentally altering this previously held view”, explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center.

The G protein FlhF, together with a signal sequence binding protein (SRP54) and its receptor (FtsY), constitutes the ancient family of SRP-GTPases, which consists solely of these three proteins and is responsible for the transport of proteins in or through a biological membrane. In all known organisms, SRP54 and FtsY regulate the transport of proteins using the signal recognition particle (SRP). Although the SRP system is already well understood, it was recently demonstrated that the protein SRP54 and the receptor FtsY interact with the SRP RNA in a way reminiscent of FlhF and its newly discovered effector.

“Our study of the G protein FlhF not only offers an explanation for the FlhF effector complex, it also integrates this knowledge into a general concept of SRP-GTPase activation through RNA or proteins”, says Dr. Gert Bange of the Heidelberg University Biochemistry Center. “We used FlhF to demonstrate how the ‘modern’ protein world replaced the original RNA world by means of a strikingly simple modification.” The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
G. Bange, N. Kümmerer, P. Grudnik, R. Lindner, G. Petzold, D. Kressler, E. Hurt, K. Wild, I. Sinning:
Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat Struct Mol Biol. 2011, 18(12):1376-80. doi: 10.1038/nsmb.2141

Contact:
Prof. Dr. Irmgard Sinning / Dr. Gert Bange
Heidelberg University Biochemistry Center
phone: +49 6221 54-4780
irmi.sinning@bzh.uni-heidelberg.de
gert.bange@bzh.uni-heidelberg.de

Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>