Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells handle broken chromosomes

13.02.2009
Scientists from the Max Planck Institute of Biochemistry discovered a novel cellular response towards persistent DNA damage: After being recognized and initially processed by the cellular machinery, the broken chromosome is extensively scanned for homology and the break itself is later tethered to the nuclear envelope.

Thus the researchers uncovered a surprising feature of how DNA strand breaks can be handled. Their unexpected findings have important implications for the understanding of DNA repair mechanisms. (Molecular Cell 33, February 13th, 2009)

The central molecule for life is DNA, which constitutes the genetic blueprint of our organism. However, this precious molecule is constantly threatened by miscellaneous damage sources. DNA damage is a cause of cancer development, degenerative diseases and aging. The most dangerous and lethal type of DNA-damage is the DNA double strand break (DSB). A single DSB is enough to kill a cell or cause chromosomal aberrations leading to cancer.

Therefore, cells have evolved elaborate DNA repair systems that are fundamental for human health. DSBs can be repaired by error-prone non-homologous end joining, a pathway in which the DSB ends are simply fused together again. The alternative repair pathway, called homologous recombination, is mostly error-free and needs homologous DNA sequences to guide repair. A vast amount of research, by many scientists around the world, has provided us with a detailed picture of how the DNA damage is recognized and finally repaired. However, so far little was known, how homologous sequences are found and how cells react when DNA breaks persist.

Now, scientists around Stefan Jentsch, head of the Department of Molecular Cell Biology, were able to shed light on these questions, as they report in the upcoming issue of Molecular Cell.

The scientists modified a yeast strain in which a DSB can be induced and followed over time. Moreover, they managed to label the DNA-break for microscopic studies. Using high-resolution digital imaging, they observed after a few hours a directed movement of the break to the nuclear envelope. Jentsch and colleagues speculate that this tethering to the nuclear envelope could be a safety measure of cells to prevent erroneous and unwanted recombination events, which can have catastrophic consequences like cancer development or cell death.

Marian Kalocsay and Natalie Hiller, who conducted the study as part of their PhD-thesis research, then set out to unravel the molecular details of how a persistent DSB is recognized, processed and - at last - relocated to the nuclear envelope.

Using a high resolution method - the so called chip-on-chip technique - which allowed to investigate repair factor recruitment to DNA in unprecedented details, the researchers made a surprising observation: In an apparent attempt to find homology and repair the DSB, a protein called Rad51 (or "recombinase") begins within one hour to accumulate and to spread bi-directionally from the break, covering after a short time the entire chromosome - a much larger area than supposed before. "Intriguingly, Rad51 spreading only occurs on the chromosome where the break resides and does not "jump" to other chromosomes", says Kalocsay. As to the researchers knowledge, this is the first in vivo description of ongoing chromosome-wide homology search, which is the most mysterious event in DSB repair. Therefore, this finding has important implications for the understanding of DNA repair by homologous recombination.

Furthermore, Kalocsay and Hiller identified a novel important player in the DNA-damage response that is essential for Rad51 activation as well as for the relocation of DSBs to the nuclear envelope: the histone variant H2A.Z. In early stages of DNA repair it is incorporated into DNA near the DSBs and is essential there for the initiation of the following repair mechanisms. Later on, the attachment of the small modifying protein SUMO to H2A.Z plays an important role in the tethering of the break to the nuclear envelope. "Moreover, cells lacking H2A.Z are severely sensitive to DSBs, thus revealing H2A.Z as an important and novel factor in DSB-repair", explains Hiller.

Original Publication:
Marian Kalocsay*, Natalie Jasmin Hiller* and Stefan Jentsch: "Chromosome-Wide Rad51 Spreading and SUMO-H2A.Z-Dependent Chromosome Fixation in Response to a Persistent DNA Double-Strand Break"
Molecular Cell 33, 335-343, February 13, 2009 (doi:10.1016/j.molcel.2009.01.016).

*these authors contributed equally to the work

Eva-Maria Diehl
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
phone: 089 - 8578 2824
email: diehl@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/jentsch
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>