Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Best of Both Catalytic Worlds

11.10.2012
Berkeley Lab Researchers Develop New Technique for Heterogenizing Homogenous Nano Catalysts
Catalysts are substances that speed up the rates of chemical reactions without themselves being chemically changed. Industrial catalysts come in two main types – heterogeneous, in which the catalyst is in a different phase from the reactants; and homogeneous, in which catalyst and the reactants are in the same phase. Heterogeneous catalysts are valued for their sustainability because they can be recycled. Homogeneous catalysts are valued for their product selectivity as their properties can be easily tuned through relatively simple chemistry.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have combined the best properties of both types of industrial catalysts by encapsulating nanoclusters of a metallic heterogeneous catalyst within the branched arms of the molecules known as dendrimers.

The results are heterogenized homogeneous nanocatalysts that are sustainable and feature high reactivity and selectivity. Furthermore, these heterogenized homogeneous nanocrystals hold promise for bridging the gap between industrial catalysts, which carry out simple reactions, and a third type of catalyst, the proteins known as enzymes, that nature uses to carry out the complex reactions of biochemistry.

“Using cyclopropanation reactions catalyzed by dendrimer-encapsulated gold and other metal nanoclusters, including platinum, palladium and rhodium, we have demonstrated that changing the dendrimer properties allows catalytic reactivity in a heterogeneous catalyst to be tuned in a similar fashion to ligand modification in a homogeneous catalyst,” says world renowned catalysis chemist Gabor Somorjai, one of the leaders of this research. “Furthermore, we have shown that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enable control over product distribution in a way that is not easily available for homogeneous catalysts.”

Somorjai is a senior scientist with Berkeley Lab’s Materials Sciences Division, where he directs the Surface Science and Catalysis Program, and a professor of chemistry with the Chemistry Department at the University of California Berkeley. He is the corresponding author along with chemist Dean Toste, who also holds joint appointments with Berkeley Lab and UC Berkeley, of a paper describing this research in the journal Nature Chemistry. The paper is titled “Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time.” Other authors were Elad Gross and Jack Hung-Chang Liu.

Catalysts are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts have been the traditional workhorses, but in recent years nano-sized catalysts have surged in importance.

“From our work, it has become increasingly clear that at the molecular level, all catalysts – heterogeneous, homogeneous and enzymes – function the same,” Somorjai says. “We have now proven that working with metal nanoclusters, the same chemistry can be done with heterogeneous or homogeneous catalysts.”

Adds corresponding author Dean Toste, “It’s an exciting prospect that there may be universal design principles that can be applied to constructing 100-percent selective catalysts, whether they are homogeneous or heterogeneous. Ultimately, if these principles can be uncovered, it should be possible to design complex networks of selective catalysts that generate products with high efficiency.”

The key to the success of this latest research was the encapsulation of metal nanoparticles inside dendrimers. The term “dendrimer” comes from the Greek word for “tree,” an apt description for branching polymer molecules that resemble a worm’s eye view of a tree’s root system. Somorjai, Toste and their co-authors used gold nanoclusters and polyamidoamine (PAMAM), a common class of dendrimers suitable for numerous applications in materials and biotechnology. They successfully tested their dendrimer-encapsulated catalyst on cyclopropane, a biomolecule widely used in the pharmaceutical and chemical industries, and typically formed through homogeneous catalysis.

“By designing the molecular architecture of our catalyst to feature a highly crowded matrix, we greatly enhanced the product selectivity of our reaction, similar to the use of bulky ligands in a homogeneous catalyst,” says Elad Gross, the lead author of the Nature Chemistry paper and a member of Somorjai’s research group. “Product selectivity was further enhanced by employing the catalyst in a flow reactor and changing the flow rate of the reactants. This gave us a high degree of control over our secondary reactions, again similar to the role that ligand electronic properties play in tuning the chemical selectivity of homogeneous catalysts.”

Given that flow systems are widely used in industrial chemistry, the concept of replacing homogeneous catalysts with dendrimer-encapsulated heterogeneous catalysts whose product selectivity can be controlled should be a popular alternative. For example, the catalysis of cyclopropane could be tuned to favor the formation of cyclopropanes that are critical components of cancer and cholesterol medicines. The recyclability of these dendrimer-encapsulated heterogeneous catalysts is another major advantage.

“Highly selective catalysts, especially those that can be recycled readily, are vital for the development of sustainable chemical processes,” Gross says. “In the future, with our technique it should be possible to combine heterogeneous and homogeneous catalysts to get specific products with very high selectivity.”

This research was supported by the DOE Office of Science.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>