Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New candidate genes for schizophrenia identified

22.10.2008
UCLA-Dutch discovery yields insight into underlying biology of disease
Schizophrenia is a severe psychiatric disease characterized by disorganized behavior, delusions and hallucinations. Sadly, there is no clear understanding of its cause.

Now, in a collaborative study, UCLA and Dutch researchers have identified three new candidate genes for schizophrenia that may contribute to a better understanding of how the disease evolves.

Reporting in the October issue of the American Journal of Human Genetics, Roel A. Ophoff, an assistant professor with the Center for Neurobehavioral Genetics at the Semel Institute for Neuroscience and Human Behavior at UCLA, and his colleagues examined the genetic makeup of 54 Dutch patients diagnosed with deficit schizophrenia, a particularly severe form of the disease that is both chronic and debilitating.

Specifically, they looked at a number of large but rare deletions and duplications in the genome of the patients, known as copy number variants, or CNVs. Scientists suspect that such missing or duplicated segments of DNA could be responsible for increased susceptibility to a number of diseases. In this study, the researchers showed that three of these rare CNVs interrupted genes associated with brain function.

"These genes were not implicated in schizophrenia before," said Ophoff, who holds a joint appointment at the University of Utrecht in the Netherlands. "So next, we tested these three genes in a large follow-up study of more than 750 general-schizophrenia patients and 700 controls. And what surprised us is that roughly 1 percent of schizophrenia patients harbor these genomic deletions."

Changes in these three genes are rare but seem to dramatically increase the risk of developing schizophrenia, Ophoff said. The identification of these new candidate genes will provide a better insight into the underlying biology of schizophrenia and explain why some individuals are at risk to develop the disease.

"Another important step will be to assess the inheritance patterns of such CNVs," Ophoff said. "Since this is an inherited disease affecting approximately 1 percent of the population, this would be valuable toward establishing the clinical relevance of this important class of genomic variations."

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Hallucinations Ophoff candidate candidate genes delusions patients schizophrenia

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>