Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer gene discovered

13.10.2009
A new cancer gene has been discovered by a research group at the Sahlgrenska Academy at the University of Gothenburg, Sweden. The gene causes an insidious form of glandular cancer usually in the head and neck and in women also in the breast. The discovery could lead to quicker and better diagnosis and more effective treatment.

A new cancer gene has been discovered by a research group at the Sahlgrenska Academy at the University of Gothenburg, Sweden. The gene causes an insidious form of glandular cancer usually in the head and neck and in women also in the breast. The discovery could lead to quicker and better diagnosis and more effective treatment.

The study is published today in the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS).

The cancer caused by this new cancer gene is called adenoid cystic carcinoma and is a slow-growing but deadly form of cancer. The research group can now show that the gene is found in 100% of these tumours, which means that a genetic test can easily be used to make a correct diagnosis.

"Now that we know what the cancer is down to, we can also develop new and more effective treatments for this often highly malignant and insidious form of cancer," says professor Göran Stenman, who heads the research group at the Lundberg Laboratory for Cancer Research at the Sahlgrenska Academy. "One possibility might be to develop a drug that quite simply turns off this gene."

The newly discovered cancer gene is what is known as a fusion gene, created when two healthy genes join together as a result of a chromosome change.

"Previously it was thought that fusion genes pretty much only caused leukaemia, but our group can now show that this type of cancer gene is also common in glandular cancer," says Stenman.

One of the two genes that form the fusion gene is known as MYB. Among other things, this gene controls cell growth and makes sure that the body gets rid of cells that are no longer needed. It has long been known to be a highly potent cancer gene in animals, but for a long time there was no evidence of the gene being involved in the development of tumours in humans.

"We suggested back in 1986 that the MYB gene might be involved in this form of cancer, but it's only recently that we've had access to the tools needed to prove it," says Stenman.

The research group has also looked at the mechanism behind the transformation of the normal MYB gene into a cancer gene. Genes can be compared to blueprints for proteins. Carefully controlled regulating systems then determine when and how much of each protein is formed. One such regulating system, discovered recently, is microRNA, which can turn genes on and off. When this cancer gene forms, this important control system is put out of action, leading to activation of the gene and massive overproduction of an abnormal MYB protein with carcinogenic properties.

"This is an important discovery, because it's a new mechanism which I think will turn out to be quite common in a variety of human cancers," says Stenman.

The study was conducted with support from the Swedish Cancer Society and Sahlgrenska University Hospital, among others.

For more information, please contact:
Professor Göran Stenman, tel: +46 31 342 2922, mobile: +46 73 901 1040, e-mail: goran.stenman@llcr.med.gu.se
Journal: Proceedings of the National Academy of Sciences (PNAS)
Title of article: Recurrent fusion of the MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck

Authors: Marta Persson, Ywonne Andrén, Joachim Mark, Hugo M. Horlings, Fredrik Persson, Göran Stenman

Elin Lindström Claessen
Public Relations Officer at the Sahlgrenska Academy at the University of Gothenburg
Tel: +46 31 786 3869, mobile: +46 70 829 4303
E-mail: elin.lindstrom@sahlgrenska.gu.se
The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of medicine, odontology and health care sciences. About 4 000 undergraduate and 1 000 postgraduate students are enrolled at the academy. There are 1 500 members of staff, of whom 850 are researchers and/or teachers.

Helena Aaberg | idw
Further information:
http://www.sahlgrenska.gu.se

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>