Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New cancer gene discovered

A new cancer gene has been discovered by a research group at the Sahlgrenska Academy at the University of Gothenburg, Sweden. The gene causes an insidious form of glandular cancer usually in the head and neck and in women also in the breast. The discovery could lead to quicker and better diagnosis and more effective treatment.

A new cancer gene has been discovered by a research group at the Sahlgrenska Academy at the University of Gothenburg, Sweden. The gene causes an insidious form of glandular cancer usually in the head and neck and in women also in the breast. The discovery could lead to quicker and better diagnosis and more effective treatment.

The study is published today in the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS).

The cancer caused by this new cancer gene is called adenoid cystic carcinoma and is a slow-growing but deadly form of cancer. The research group can now show that the gene is found in 100% of these tumours, which means that a genetic test can easily be used to make a correct diagnosis.

"Now that we know what the cancer is down to, we can also develop new and more effective treatments for this often highly malignant and insidious form of cancer," says professor Göran Stenman, who heads the research group at the Lundberg Laboratory for Cancer Research at the Sahlgrenska Academy. "One possibility might be to develop a drug that quite simply turns off this gene."

The newly discovered cancer gene is what is known as a fusion gene, created when two healthy genes join together as a result of a chromosome change.

"Previously it was thought that fusion genes pretty much only caused leukaemia, but our group can now show that this type of cancer gene is also common in glandular cancer," says Stenman.

One of the two genes that form the fusion gene is known as MYB. Among other things, this gene controls cell growth and makes sure that the body gets rid of cells that are no longer needed. It has long been known to be a highly potent cancer gene in animals, but for a long time there was no evidence of the gene being involved in the development of tumours in humans.

"We suggested back in 1986 that the MYB gene might be involved in this form of cancer, but it's only recently that we've had access to the tools needed to prove it," says Stenman.

The research group has also looked at the mechanism behind the transformation of the normal MYB gene into a cancer gene. Genes can be compared to blueprints for proteins. Carefully controlled regulating systems then determine when and how much of each protein is formed. One such regulating system, discovered recently, is microRNA, which can turn genes on and off. When this cancer gene forms, this important control system is put out of action, leading to activation of the gene and massive overproduction of an abnormal MYB protein with carcinogenic properties.

"This is an important discovery, because it's a new mechanism which I think will turn out to be quite common in a variety of human cancers," says Stenman.

The study was conducted with support from the Swedish Cancer Society and Sahlgrenska University Hospital, among others.

For more information, please contact:
Professor Göran Stenman, tel: +46 31 342 2922, mobile: +46 73 901 1040, e-mail:
Journal: Proceedings of the National Academy of Sciences (PNAS)
Title of article: Recurrent fusion of the MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck

Authors: Marta Persson, Ywonne Andrén, Joachim Mark, Hugo M. Horlings, Fredrik Persson, Göran Stenman

Elin Lindström Claessen
Public Relations Officer at the Sahlgrenska Academy at the University of Gothenburg
Tel: +46 31 786 3869, mobile: +46 70 829 4303
The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of medicine, odontology and health care sciences. About 4 000 undergraduate and 1 000 postgraduate students are enrolled at the academy. There are 1 500 members of staff, of whom 850 are researchers and/or teachers.

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>