Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug eyes: Tiny 3-D glasses confirm insect 3-D vision

08.01.2016

Miniature glasses have proved that mantises use 3D vision - providing a new model to improve visual perception in robots.

Most knowledge about 3D vision has come from vertebrates, however, a team from Newcastle University, UK publishing today in Scientific Reports, confirm that the praying mantis, an invertebrate, does indeed use stereopsis or 3D perception for hunting.


This is a mantis wearing 3D glasses.

Credit: Newcastle University

In a specially-designed insect cinema, they have shown that it needs to be 'old school' 3D glasses for tests to work on mantises. While in humans that would be with red and blue lenses, red light is poorly visible to mantises so they have custom-made glasses with one blue and one green lens!

Better understanding of 3D vision

3D vision in mantises was originally shown in the 1980s by Samuel Rossel, but his work used prisms and occluders which meant that only a very limited set of images could be shown. The Newcastle University team has developed 3D glasses suitable for insects which means they can show the insects any images they want, opening up new avenues of research.

Study leader, Jenny Read, Professor of Vision Science said: "Despite their minute brains, mantises are sophisticated visual hunters which can capture prey with terrifying efficiency. We can learn a lot by studying how they perceive the world.

"Better understanding of their simpler processing systems helps us understand how 3D vision evolved, and could lead to possible new algorithms for 3D depth perception in computers."

In the experiments, mantises fitted with tiny glasses attached with beeswax were shown short videos of simulated bugs moving around a computer screen. The mantises didn't try to catch the bugs when they were in 2D. But when the bugs were shown in 3D, apparently floating in front of the screen, the mantises struck out at them. This shows that mantises do indeed use 3D vision.

Old-school 3D glasses

Initial testing of the most widely-used contemporary 3D technology used for humans - using circular polarization to separate the two eyes' images - didn't work because the insects were so close to the screen that the glasses failed to separate the two eyes' images correctly.

Dr Vivek Nityananda, sensory biologist at Newcastle University and part of the research team continues: "When this system failed we looked at the old-style 3D glasses with red and blue lenses. Since red light is poorly visible to mantises, we used green and blue glasses and an LED monitor with unusually narrow output in the green and blue wavelength.

"We definitively demonstrated 3D vision or stereopsis in mantises and also showed that this technique can be effectively used to deliver virtual 3D stimuli to insects."

The Newcastle University team will now continue the research examining the algorithms used for depth perception in insects to better understand how human vision evolved and to develop new ways of adding 3D technology to computers and robots.

###

Reference: Insect stereopsis demonstrated using a 3D insect cinema. Vivek Nityananda, Ghaith Tarawneh, Ronny Rosner, Judith Nicolas, Stuart Crichton & Jenny Read. Scientific Reports 6, Article number: 18718 http://www.nature.com/articles/srep18718

Media Contact

Karen Bidewell
press.office@ncl.ac.uk
01-912-086-972

 @UniofNewcastle

http://www.ncl.ac.uk 

Karen Bidewell | EurekAlert!

Further reports about: 3D glasses 3D technology computer screen eyes insect

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>