Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright Lights of Purity

31.01.2012
Berkeley Lab Researchers Discover Why Pure Quantum Dots and Nanorods Shine Brighter
To the lengthy list of serendipitous discoveries – gravity, penicillin, the New World – add this: Scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered why a promising technique for making quantum dots and nanorods has so far been a disappointment. Better still, they’ve also discovered how to correct the problem.

A team of researchers led by chemist Paul Alivisatos, director of Berkeley Lab, and Prashant Jain, a chemist now with the University of Illinois, has discovered why nanocrystals made from multiple components in solution via the exchange of cations (positive ions) have been poor light emitters. The problem, they found, stems from impurities in the final product. The team also demonstrated that these impurities can be removed through heat.

“By heating these nanocrystals to 100 degrees Celsius, we were able to remove the impurities and increase their luminescence by 400-fold within 30 hours,” says Jain, a member of Alivisatos’ research group when this work was done. “When the impurities were removed the optoelectronic properties of nanocrystals made through cation-exchange were comparable in quality to dots and nanorods conventionally synthesized.”

Says Alivisatos, “With our new findings, the cation-exchange technique really becomes a method that can be widely used to make novel high optoelectronic grade nanocrystals.”

Jain is the lead author and Alivisatos the corresponding author of a paper describing this work in the journal Angewandte Chemie titled “Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ion Exchange Synthesis.” Other authors were Brandon Beberwyck, Lam-Kiu Fong and Mark Polking.

Quantum dots and nanorods are light-emitting semiconductor nanocrystals that have a broad range of applications, including bio-imaging, solar energy and display screen technologies. Typically, these nanocrystals are synthesized from colloids – particles suspended in solution. As an alternative, Alivisatos and his research group developed a new solution-based synthesis technique in which nanocrystals are chemically transformed by exchanging or replacing all of the cations in the crystal lattice with another type of cation. This cation-exchange technique makes it possible to produce new types of core/shell nanocrystals that are inaccessible through conventional synthesis. Core/shell nanocrystals are heterostructures in which one type of semiconductor is enclosed within another, for example, a cadmium selenide (CdSe) core and a cadmium sulfide (CdS) shell.

“While holding promise for the simple and inexpensive fabrication of multicomponent nanocrystals, the cation-exchange technique has yielded quantum dots and nanorods that perform poorly in optical and electronic devices,” says Alivisatos, a world authority on nanocrystal synthesis who holds a joint appointment with the University of California (UC) Berkeley, where he is the Larry and Diane Bock professor of Nanotechnology.

As Jain tells the story, he was in the process of disposing of CdSe/CdS nanocrystals in solution that were six months old when out of habit he tested the nanocrystals under ultraviolet light. To his surprise he observed significant luminescence. Subsequent spectral measurements and comparing the new data to the old showed that the luminescence of the nanocrystals had increased by at least sevenfold.

“It was an accidental finding and very exciting,” Jain says, “but since no one wants to wait six months for their samples to become high quality I decided to heat the nanocrystals to speed up whatever process was causing their luminescence to increase.”

Jain and the team suspected and subsequent study confirmed that impurities – original cations that end up being left behind in the crystal lattice during the exchange process – were the culprit.

“Even a few cation impurities in a nanocrystal are enough to be effective at trapping useful, energetic charge-carriers,” Jain says. “In most quantum dots or nanorods, charge-carriers are delocalized over the entire nanocrystal, making it easy for them to find impurities, no matter how few there might be, within the nanocrystal. By heating the solution to remove these impurities and shut off this impurity-mediated trapping, we give the charge-carriers enough time to radiatively combine and thereby boost luminescence.”

Since charge-carriers are also instrumental in electronic transport, photovoltaic performance, and photocatalytic processes, Jain says that shutting off impurity-mediated trapping should also boost these optoelectronic properties in nanocrystals synthesized via the cation-exchange technique.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional Information

For more information about the research of Paul Alivisatos, visit the Website at http://www.cchem.berkeley.edu/pagrp/

For more information about the research of Prashant Jain, visit the Website at http://www.nanogold.org/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>