Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright Lights of Purity

31.01.2012
Berkeley Lab Researchers Discover Why Pure Quantum Dots and Nanorods Shine Brighter
To the lengthy list of serendipitous discoveries – gravity, penicillin, the New World – add this: Scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered why a promising technique for making quantum dots and nanorods has so far been a disappointment. Better still, they’ve also discovered how to correct the problem.

A team of researchers led by chemist Paul Alivisatos, director of Berkeley Lab, and Prashant Jain, a chemist now with the University of Illinois, has discovered why nanocrystals made from multiple components in solution via the exchange of cations (positive ions) have been poor light emitters. The problem, they found, stems from impurities in the final product. The team also demonstrated that these impurities can be removed through heat.

“By heating these nanocrystals to 100 degrees Celsius, we were able to remove the impurities and increase their luminescence by 400-fold within 30 hours,” says Jain, a member of Alivisatos’ research group when this work was done. “When the impurities were removed the optoelectronic properties of nanocrystals made through cation-exchange were comparable in quality to dots and nanorods conventionally synthesized.”

Says Alivisatos, “With our new findings, the cation-exchange technique really becomes a method that can be widely used to make novel high optoelectronic grade nanocrystals.”

Jain is the lead author and Alivisatos the corresponding author of a paper describing this work in the journal Angewandte Chemie titled “Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ion Exchange Synthesis.” Other authors were Brandon Beberwyck, Lam-Kiu Fong and Mark Polking.

Quantum dots and nanorods are light-emitting semiconductor nanocrystals that have a broad range of applications, including bio-imaging, solar energy and display screen technologies. Typically, these nanocrystals are synthesized from colloids – particles suspended in solution. As an alternative, Alivisatos and his research group developed a new solution-based synthesis technique in which nanocrystals are chemically transformed by exchanging or replacing all of the cations in the crystal lattice with another type of cation. This cation-exchange technique makes it possible to produce new types of core/shell nanocrystals that are inaccessible through conventional synthesis. Core/shell nanocrystals are heterostructures in which one type of semiconductor is enclosed within another, for example, a cadmium selenide (CdSe) core and a cadmium sulfide (CdS) shell.

“While holding promise for the simple and inexpensive fabrication of multicomponent nanocrystals, the cation-exchange technique has yielded quantum dots and nanorods that perform poorly in optical and electronic devices,” says Alivisatos, a world authority on nanocrystal synthesis who holds a joint appointment with the University of California (UC) Berkeley, where he is the Larry and Diane Bock professor of Nanotechnology.

As Jain tells the story, he was in the process of disposing of CdSe/CdS nanocrystals in solution that were six months old when out of habit he tested the nanocrystals under ultraviolet light. To his surprise he observed significant luminescence. Subsequent spectral measurements and comparing the new data to the old showed that the luminescence of the nanocrystals had increased by at least sevenfold.

“It was an accidental finding and very exciting,” Jain says, “but since no one wants to wait six months for their samples to become high quality I decided to heat the nanocrystals to speed up whatever process was causing their luminescence to increase.”

Jain and the team suspected and subsequent study confirmed that impurities – original cations that end up being left behind in the crystal lattice during the exchange process – were the culprit.

“Even a few cation impurities in a nanocrystal are enough to be effective at trapping useful, energetic charge-carriers,” Jain says. “In most quantum dots or nanorods, charge-carriers are delocalized over the entire nanocrystal, making it easy for them to find impurities, no matter how few there might be, within the nanocrystal. By heating the solution to remove these impurities and shut off this impurity-mediated trapping, we give the charge-carriers enough time to radiatively combine and thereby boost luminescence.”

Since charge-carriers are also instrumental in electronic transport, photovoltaic performance, and photocatalytic processes, Jain says that shutting off impurity-mediated trapping should also boost these optoelectronic properties in nanocrystals synthesized via the cation-exchange technique.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional Information

For more information about the research of Paul Alivisatos, visit the Website at http://www.cchem.berkeley.edu/pagrp/

For more information about the research of Prashant Jain, visit the Website at http://www.nanogold.org/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>