Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds Do It, Bees Do It; Termites Don’t, Necessarily

30.03.2009
Scientists at North Carolina State University and three universities in Japan have shown for the first time that it is possible for certain female termite “primary queens” to reproduce both sexually and asexually during their lifetimes.

The asexually produced babies mostly grow to be queen successors – so-called “secondary queens” – that remain in the termite colony and mate with the king. This produces large broods of babies without the dangers of inbreeding, as secondary queens have no genes in common with the king.

Babies produced the old-fashioned way, between either the primary or secondary queens and the king, are mostly workers and soldiers of both genders, the research shows.

The research is published in the March 27 edition of the journal Science.

Dr. Ed Vargo, associate professor of entomology at NC State and a co-author of the paper, says that the species of subterranean termite studied, Reticulitermes speratus, is an important economic pest in Japan and is in the same genus as termites found in North Carolina.

Termite colonies are generally founded and then sustained by a primary king and primary queen. In the study, the scientists collected termites from a number of different colonies in Japan. In many colonies, the primary queen was not present, but had been seemingly succeeded by numerous secondary queens. Most primary kings, meanwhile, were present in the colonies. This suggests, Vargo says, that the primary kings live longer than the primary queens, so there is a strong need for these termites to have genetically diverse queen successors to grow the colonies efficiently.

Vargo’s genetic analysis of termite populations in several colonies showed that secondary queens shared genes with primary queens but not with primary kings, suggesting asexual reproduction. At the same time, male and female termite workers and soldiers had genetic traces of both the primary king and primary queen, suggesting sexual reproduction.

“The conditional use of sex is unusual in insects and was previously unknown in termites. This novel use of both sexual and asexual reproduction is a way for primary queens to maximize reproductive output allowing the colony to grow bigger and faster while maintaining genetic diversity and avoiding the disadvantages of inbreeding,” Vargo says.

Vargo plans to continue this research by looking for other species of female termites with dual mating systems. He adds that learning more about the genetics behind reproduction could lead to ways of preventing the production of certain castes of termites – like the primary queens that reproduce in two ways – or ways of knocking out certain gene functions in those castes.

- kulikowski -

“Queen Succession Through Asexual Reproduction in Termites”
Authors: Kenji Matasuura, Hiroko Nakano and Toshihisa Yashiro, Okayama University; Edward L. Vargo and Paul E. Labadie, North Carolina State University; Kazutaka Kawatsu, Kyoto University; Kazuki Tsuji, University of the Ryukyus

Published: March 26, 2009, in Science

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>