Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biofuel Process May Change Chemical Industry

22.04.2010
A new method of converting biomass feedstock into sustainable fuel developed by researchers at the University of Massachusetts Amherst and University of Minnesota has the potential to have a profound effect on the chemical industry.

The “gasification” process developed by this team of researchers not only greatly reduces greenhouse gas emissions, but doubles the amount of fuel that can be made from an acre of biomass feedstock, says Paul J. Dauenhauer of the UMass Amherst chemical engineering department.

Dauenhauer explained the new process in a recent story in Technology Review, published by the Massachusetts Institute of Technology. He says using the new approach, researchers gasify biomass in the presence of precisely controlled amounts of carbon dioxide and methane in a special catalytic reactor they have developed. The result is that all the carbon in both the biomass and the methane is converted to carbon monoxide.

He says applying this new technique allows the researchers to use 100 percent of the carbon in that biomass for making biofuels. That doubles the proportion of fuel-producing carbon produced by a conventional gasification process done in one reactor while converting biomass to biofuels.

The new method, when perfected in as few as two years, would be a major step forward in the quest for a production-ready process to convert biomass to biofuel, Dauenhauer says. His colleagues at Minnesota are Professor Aditya Bhan and Regents Professor Lanny Schmidt.

Dauenhauer explains that currently, biomass can be converted to fuels by gasification, which uses high temperatures to break feedstock down into carbon monoxide and hydrogen, which can then be made into various fuels, including hydrocarbons. But there’s a major drawback – about half of the carbon in the biomass gets converted to carbon dioxide rather than into carbon monoxide, a precursor for fuels. The question for Dauenhauer and the research team was how to improve that technology. One of the ways is to control the “breakdown environment.”

To increase the yields from gasification, the researchers add carbon dioxide, which promotes a well-known reaction: the carbon dioxide combines with hydrogen to produce water and carbon monoxide. But adding carbon dioxide isn’t enough to convert all of the carbon in biomass into carbon monoxide instead of carbon dioxide. It’s also necessary to add hydrogen, which helps in part by providing the energy needed to drive the reactions. The new gasification process uses methane, the main component of cheap and available natural gas, to generate the hydrogen within the reactor. While it has long been possible to do each of these steps in separate chemical reactors, the researchers’ innovation was to find a way to combine all of these reactions in a single reactor, the key to making the process affordable, Dauenhaer says.

It could be especially profound considering the high stakes. “Our ability to provide fuels and chemicals in a sustainable manner for future generations presents the largest global challenge for reaction engineering in the 21st century,” says Dauenhauer.

A commercial version of the process could be set up near an existing natural gas power plant, which would provide ready access to methane and carbon dioxide. But, as the Technology Review notes, the process isn’t yet ready for commercialization. The researchers will need to demonstrate that it works with biomass, not just with cellulose derived from biomass. Biomass contains various contaminants not found in pure cellulose. Those contaminants could have a negative effect on the catalyst, and this could make it necessary to reengineer the reactor. And there could be challenges scaling up the process, including ensuring that heat moves through the reactor the same way it does on a small scale.

Dauenhauer notes that those challenges are minor compared to what his research team has already overcome: “If you have an industrial facility developing this process, I believe it could be brought to market within a couple of years.”

Paul J. Dauenhauer | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>