Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Biofuel Process May Change Chemical Industry

A new method of converting biomass feedstock into sustainable fuel developed by researchers at the University of Massachusetts Amherst and University of Minnesota has the potential to have a profound effect on the chemical industry.

The “gasification” process developed by this team of researchers not only greatly reduces greenhouse gas emissions, but doubles the amount of fuel that can be made from an acre of biomass feedstock, says Paul J. Dauenhauer of the UMass Amherst chemical engineering department.

Dauenhauer explained the new process in a recent story in Technology Review, published by the Massachusetts Institute of Technology. He says using the new approach, researchers gasify biomass in the presence of precisely controlled amounts of carbon dioxide and methane in a special catalytic reactor they have developed. The result is that all the carbon in both the biomass and the methane is converted to carbon monoxide.

He says applying this new technique allows the researchers to use 100 percent of the carbon in that biomass for making biofuels. That doubles the proportion of fuel-producing carbon produced by a conventional gasification process done in one reactor while converting biomass to biofuels.

The new method, when perfected in as few as two years, would be a major step forward in the quest for a production-ready process to convert biomass to biofuel, Dauenhauer says. His colleagues at Minnesota are Professor Aditya Bhan and Regents Professor Lanny Schmidt.

Dauenhauer explains that currently, biomass can be converted to fuels by gasification, which uses high temperatures to break feedstock down into carbon monoxide and hydrogen, which can then be made into various fuels, including hydrocarbons. But there’s a major drawback – about half of the carbon in the biomass gets converted to carbon dioxide rather than into carbon monoxide, a precursor for fuels. The question for Dauenhauer and the research team was how to improve that technology. One of the ways is to control the “breakdown environment.”

To increase the yields from gasification, the researchers add carbon dioxide, which promotes a well-known reaction: the carbon dioxide combines with hydrogen to produce water and carbon monoxide. But adding carbon dioxide isn’t enough to convert all of the carbon in biomass into carbon monoxide instead of carbon dioxide. It’s also necessary to add hydrogen, which helps in part by providing the energy needed to drive the reactions. The new gasification process uses methane, the main component of cheap and available natural gas, to generate the hydrogen within the reactor. While it has long been possible to do each of these steps in separate chemical reactors, the researchers’ innovation was to find a way to combine all of these reactions in a single reactor, the key to making the process affordable, Dauenhaer says.

It could be especially profound considering the high stakes. “Our ability to provide fuels and chemicals in a sustainable manner for future generations presents the largest global challenge for reaction engineering in the 21st century,” says Dauenhauer.

A commercial version of the process could be set up near an existing natural gas power plant, which would provide ready access to methane and carbon dioxide. But, as the Technology Review notes, the process isn’t yet ready for commercialization. The researchers will need to demonstrate that it works with biomass, not just with cellulose derived from biomass. Biomass contains various contaminants not found in pure cellulose. Those contaminants could have a negative effect on the catalyst, and this could make it necessary to reengineer the reactor. And there could be challenges scaling up the process, including ensuring that heat moves through the reactor the same way it does on a small scale.

Dauenhauer notes that those challenges are minor compared to what his research team has already overcome: “If you have an industrial facility developing this process, I believe it could be brought to market within a couple of years.”

Paul J. Dauenhauer | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>