Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biofuel Process May Change Chemical Industry

22.04.2010
A new method of converting biomass feedstock into sustainable fuel developed by researchers at the University of Massachusetts Amherst and University of Minnesota has the potential to have a profound effect on the chemical industry.

The “gasification” process developed by this team of researchers not only greatly reduces greenhouse gas emissions, but doubles the amount of fuel that can be made from an acre of biomass feedstock, says Paul J. Dauenhauer of the UMass Amherst chemical engineering department.

Dauenhauer explained the new process in a recent story in Technology Review, published by the Massachusetts Institute of Technology. He says using the new approach, researchers gasify biomass in the presence of precisely controlled amounts of carbon dioxide and methane in a special catalytic reactor they have developed. The result is that all the carbon in both the biomass and the methane is converted to carbon monoxide.

He says applying this new technique allows the researchers to use 100 percent of the carbon in that biomass for making biofuels. That doubles the proportion of fuel-producing carbon produced by a conventional gasification process done in one reactor while converting biomass to biofuels.

The new method, when perfected in as few as two years, would be a major step forward in the quest for a production-ready process to convert biomass to biofuel, Dauenhauer says. His colleagues at Minnesota are Professor Aditya Bhan and Regents Professor Lanny Schmidt.

Dauenhauer explains that currently, biomass can be converted to fuels by gasification, which uses high temperatures to break feedstock down into carbon monoxide and hydrogen, which can then be made into various fuels, including hydrocarbons. But there’s a major drawback – about half of the carbon in the biomass gets converted to carbon dioxide rather than into carbon monoxide, a precursor for fuels. The question for Dauenhauer and the research team was how to improve that technology. One of the ways is to control the “breakdown environment.”

To increase the yields from gasification, the researchers add carbon dioxide, which promotes a well-known reaction: the carbon dioxide combines with hydrogen to produce water and carbon monoxide. But adding carbon dioxide isn’t enough to convert all of the carbon in biomass into carbon monoxide instead of carbon dioxide. It’s also necessary to add hydrogen, which helps in part by providing the energy needed to drive the reactions. The new gasification process uses methane, the main component of cheap and available natural gas, to generate the hydrogen within the reactor. While it has long been possible to do each of these steps in separate chemical reactors, the researchers’ innovation was to find a way to combine all of these reactions in a single reactor, the key to making the process affordable, Dauenhaer says.

It could be especially profound considering the high stakes. “Our ability to provide fuels and chemicals in a sustainable manner for future generations presents the largest global challenge for reaction engineering in the 21st century,” says Dauenhauer.

A commercial version of the process could be set up near an existing natural gas power plant, which would provide ready access to methane and carbon dioxide. But, as the Technology Review notes, the process isn’t yet ready for commercialization. The researchers will need to demonstrate that it works with biomass, not just with cellulose derived from biomass. Biomass contains various contaminants not found in pure cellulose. Those contaminants could have a negative effect on the catalyst, and this could make it necessary to reengineer the reactor. And there could be challenges scaling up the process, including ensuring that heat moves through the reactor the same way it does on a small scale.

Dauenhauer notes that those challenges are minor compared to what his research team has already overcome: “If you have an industrial facility developing this process, I believe it could be brought to market within a couple of years.”

Paul J. Dauenhauer | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>