Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity in Ontario’s Great Lakes region may be greater than we thought

29.08.2013
Genetic tests show big difference between threatened Muskoka-dwelling plant and its New York State cousin indicating that perceived global status may be misleading when assessing species at risk

Branched Bartonia (Bartonia paniculata), a threatened species, is a spindly annual plant that grows to 40 cm tall and has tiny white flowers. Researchers at Trent University compared genetic data from the two geographically distinct populations of this small wetland plant, and found that the Muskoka, Ontario ones are genetically very different from a core population found in New York State, 600 km away.

This discovery suggests that the Branched Bartonia in Ontario is genetically unique, and therefore under a much greater threat – which impacts conservation management decisions. The findings suggest that the genetic diversity, and hence biodiversity, in the Great Lakes region of Ontario may be much greater than previously realized. This research was published today in the journal Botany.

Populations of a species are commonly separated by relatively short distances, yet sometimes there is a leap of several hundred kilometres between a species’ core set of populations and a subset of populations that are known as disjuncts. In Ontario, Canada, numerous species at risk occur as disjunct populations, most commonly around the Great Lakes region.

“Though many of these populations are considered regionally threatened because they harbour a relatively small number of individuals, they may not be considered globally threatened because individuals in the core set of populations (usually further south) are often abundant,” explains Claudia Ciotir, a co-author of the study and researcher in the Department of Environmental and Life Sciences at Trent University in Peterborough, Ontario. “This means that the core populations can downgrade the conservation status of the disjunct populations, but this downgrading assumes that the disjunct and core populations are closely related to one another.”

“Our findings provide evidence that the accumulated genetic novelty between disjuncts and their central populations is important and we recommend that genetic novelty should be factored into future conservation policies of Canadian disjunct populations. We show that comparative genetic assessments of disjunct and central populations can provide information that is critical to decisions about conservation management.”

This divergent evolutionary history may be relevant to a suite of 62 species of disjunct populations residing along the Great Lakes shores. The study “Evolutionary history and conservation value of disjunct Bartonia paniculata subsp. paniculata (Branched Bartonia) populations in Canada” was published today in the journal Botany. >

DOI: dx.doi.org/10.1139/cjb-2013-0063

For more information about this study or to schedule an interview with the authors, please contact:

Claudia Ciotir (co-author)
Trent University
email: claudiaciotir2@trentu.ca
An Kosurko
Marketing & Communications Officer
Trent University
email: Ankosurko@trentu.ca
Jenny Ryan
Manager, Communication
Canadian Science Publishing (NRC Research Press)
email: jennyryan@nrcresearchpress.com
About the journal
Botany, an international journal for plant biology, has been publishing research in all segments of plant sciences since 1929. Published by Canadian Science Publishing, Botany is part of the prestigious NRC Research Press collection of journals. The journal is affiliated with the Canadian Botanical Association and the Canadian Society of Plant Biologists.

Disclaimer

Canadian Science Publishing, an independent not-for-profit company, publishes the NRC Research Press journals but is not affiliated with the National Research Council of Canada. Papers published by Canadian Science Publishing are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of Canadian Science Publishing or the National Research Council of Canada. Requests for commentary about the contents of any study should be directed to the authors.

Jenny Ryan | EurekAlert!
Further information:
http://www.nrcresearchpress.com
http://nrcresearchpress.com/doi/story/10.4141/news.2013.08.26.159#.Uh8ItFjwDct

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>