Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio Meets Nano

01.10.2010
Quantum dots as light antennas for artificial photosynthetic systems

Our attempts to use solar energy continue to be very ineffective; the true masters of this craft are photosynthetic plants, algae, and bacteria. Science is trying to emulate these organisms.

Igor Nabiev from the NanoGUNE Research Centre in San Sebastian (Spain), Alexander O. Govorov of Ohio University (USA), John Donegan of CRANN, Trinity College Dublin (Ireland), and a team of Spanish, Irish, French, and Russian scientists have now developed a new approach to increasing light efficiency.

As they report in the journal Angewandte Chemie, they successfully equipped the photosynthetic center from a purple bacterium with a “light-harvesting antenna” consisting of a quantum dot—an inorganic nanocrystal.

In organisms, the first step of photosynthesis is the absorption of light by an antenna, a complex of proteins and pigments that is brought into an electronically excited state by light energy. The energy packet can then be passed on to special chlorophyll cofactors in the reaction center of the photosynthetic apparatus. There the energy is finally used to produce cellular energy stores such as ATP. The passing-on of the energy packets occurs through a special radiation-free process called Förster resonance energy transfer (FRET), in which the electronic states of the sender and receiver of the energy packets must be brought into resonance.

Artificial photosynthetic systems also require an antenna for the efficient harvesting of light. The antenna must also be able to pass the energy packets along through FRET. Previous synthetic antennas were organic dye molecules, which have the disadvantage of capturing too small a range of wavelengths from sunlight. Furthermore, they are not stable under long-term irradiation. The new idea in this case was to replace the organic molecules with fluorescing inorganic quantum dots as antennas. Quantum dots are nanoscopic crystals that are so tiny that in many respects they behave like molecules rather than as macroscopic solid objects. The electronic and optical properties of quantum dots, including the wavelengths that they absorb, can largely be made to order, because these are dependent on the size, shape, and composition of the dot. The researchers chose to use quantum dots made of cadmium telluride and cadmium selenide, which fluoresce under irradiation while remaining stable in the long term. The size and surface composition were selected so that they could absorb a particularly broad range of sunlight.

The researchers were able to couple the quantum-dot antenna to a reaction center from the photosynthetic system of a purple bacterium. Under irradiation, the quantum dots then no longer fluoresce; instead they pass the absorbed energy over to the reaction center through FRET. This new approach may clear a path toward novel synthetic photosynthetic systems.

Author: Igor Nabiev, CIC NanoGUNE Consolider San Sebastian (Spain), http://www.nanogune.eu/en/research/nanobiotechnology/people/

Title: Fluorescent Quantum Dots as Artificial Antennas for Enhanced Light Harvesting and Energy Transfer to Photosynthetic Reaction Centers

Angewandte Chemie International Edition 2010, 49, No. 40, 7217–7221, Permalink to the article: http://dx.doi.org/10.1002/anie.201003067

Igor Nabiev | Angewandte Chemie
Further information:
http://www.nanogune.eu/en/research/nanobiotechnology/people/
http://dx.doi.org/10.1002/anie.201003067
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>