Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-fabrication of Artificial Blood Vessels with Laser Light

28.08.2015

Thanks to the development of an artificial, three-layered perfused skin model, the EU research project ArtiVasc 3D is advancing into uncharted territories. An interdisciplinary team of researchers led by the Fraunhofer Institute for Laser Technology ILT has developed a 3D printing process for the production of artificial blood vessels out of innovative materials. They have created the foundation to cultivate a full-thickness skin model to a much greater layer thicknesses than previously possible. At the project’s closing event at Fraunhofer ILT from October 28 to 29, 2015, the ArtiVasc 3D researchers will present their findings in detail.

To date, it has only been possible to cultivate the upper layers of the skin – the epidermis and dermis – with a total thickness of up to 200 micrometers outside the human body. A complete skin system, however, also includes subcutaneous tissue having a thickness of several millimeters.


Macroscopic image of a fatty tissue equivalent containing seven layers.

© Fraunhofer IGB, Stuttgart, Germany


Artificial branched blood vessel.

© Fraunhofer ILT, Aachen, Germany

If one wishes to co-cultivate the hypodermis, blood vessels supplying this tissue are imperative since, for cell aggregates of about 200 microns thickness, the following applies: no life without blood. This is where the European research project ArtiVasc 3D starts; it has set itself the goal of enabling significantly more complex tissues to be cultivated in vitro by developing artificial blood vessels.

The Right Material in the Right Form

One of the biggest challenges the project ArtiVasc 3D faced was to develop the right material for the production of artificial blood vessels. For them to be used in the human body, these vessels must have the correct mechanical properties and biocompatibility as well as full processability. Indeed, endothelial cells and pericytes must be able to colonize the artificial blood vessels.

In order to generate these properties, the Fraunhofer scientists combined the freeform methods of inkjet printing and stereolithography. With these combined processes, the researchers were able to achieve a very fine resolution for the construction of branched, porous blood vessels with layer thicknesses of about 20 microns.

The researchers used mathematical simulations to develop data for the construction of branched structures. This data should create the conditions so that branched structures can be generated which allow uniform blood supply. The use of the acrylate-based synthetic polymer developed in the project permits the scientists to construct these optimized vessels with a pore diameter on the order of hundreds of microns. Compared to conventional methods, the ArtiVasc 3D process provides the general conditions to produce branched and biocompatible vessels in this size for the first time.

Foray into the Third Dimension

The results of ArtiVasc 3D are shaping the future. A toolbox has been developed that can respond flexibly to diverse materials, shapes and sizes. These results can be viewed as a precursor to a fully automated process chain for the production of artificial blood vessels, and which can also be integrated into existing lines. Another highlight of the project is the successful breeding of adipose tissue in a novel bioreactor. The combination of the fatty tissue with an existing skin model allowed the production of a full-thickness skin model which has a thickness of up to 12 millimeters.

The successful conquest of the third dimension need not be confined to the skin, however. The ArtiVasc 3D project has also laid the foundations for three-dimensional tissue engineering. By using the principle of blood circulation with artificial blood vessels, medical engineers will be able to build larger structures such as whole organs in the future. For full skin cultured in vitro, there are a variety of applications: quick assistance for large-area skin injuries such as burns or after tumor resection as well as a replacement model that would make animal testing in the pharmaceutical industry unnecessary.

Success Only in a Network

Not only should the blood vessels as such be developed, but also the technology that is required to cultivate the entire skin system fully automatically, within the four-year project period. This extremely ambitious challenge could only be achieved in an interdisciplinary network. All over Europe, twenty partners from the fields of biomaterial development, tissue engineering, freeform methods, automation and simulation have joined forces under the leadership of Fraunhofer ILT.

The ArtiVasc 3D Project Partners

- Aalto University
- Albert-Ludwig University of Freiburg
- AO Research Institute Davos
- International Management Services ARTTIC
- Beiersdorf AG
- Berufsgenossenschaftliche Kliniken Bergmannsheil [Bergmannsheil Hospital of the Ruhr-Universität Bochum]
- Fraunhofer Institute for Applied Polymer Research IAP
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB
- Fraunhofer Institute for Laser Technology ILT
- Fraunhofer Institute for Production Technology and Automation IPA
- Fraunhofer Institute for Mechanics of Materials IWM
- INNOVENT e.V. Technology Development Jena
- KMS Automation GmbH
- Medical University of Vienna
- Unitechnologies SA
- University of East Anglia
- Loughborough University
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart
- University of Salerno, Department of Industrial Engineering
- Vimecon GmbH

The research in the 3D ArtiVasc project has been financially supported in accordance with the grant agreement no. 263416 in the Seventh Framework Programme of the European Union (FP7 / 2007-2013).

Join our final workshop and learn more about the latest ArtiVasc 3D results!

On October 28 and 29, 2015, the ArtiVasc 3D researchers will be presenting their results in detail prior to the final workshop at Fraunhofer ILT in Aachen. We would be pleased to welcome you! Please fill in the registration form at www.artivasc.eu

Contact

Dr. rer. nat. Nadine Nottrodt
Biotechnology and Laser Therapy Group
Telephone +49 241 8906-605
nadine.nottrodt@ilt.fraunhofer.de

Dipl.-Phys. Sascha Engelhardt
Biotechnology and Laser Therapy Group
Telephone +49 241 8906-605
sascha.engelhardt@ilt.fraunhofer.de

Dr. Arnold Gillner
Head of the competence area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
www.ilt.fraunhofer.de

Weitere Informationen:

http://www.artivasc.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>