Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond base pairs: Mapping the functional genome

02.07.2012
Regulatory sequences of mouse genome sequenced for first time

Popularly dubbed "the book of life," the human genome is extraordinarily difficult to read. But without full knowledge of its grammar and syntax, the genome's 2.9 billion base-pairs of adenine and thymine, cytosine and guanine provide limited insights into humanity's underlying genetics.


In a paper published in the July 1, 2012, issue of the journal Nature, researchers at the Ludwig Institute for Cancer Research and the University of California, San Diego School of Medicine open the book further, mapping for the first time a significant portion of the functional sequences of the mouse genome, the most widely used mammalian model organism in biomedical research. Credit: UC San Diego School of Medicine

In a paper published in the July 1, 2012 issue of the journal Nature, researchers at the Ludwig Institute for Cancer Research and the University of California, San Diego School of Medicine open the book further, mapping for the first time a significant portion of the functional sequences of the mouse genome, the most widely used mammalian model organism in biomedical research.

"We've known the precise alphabet of the human genome for more than a decade, but not necessarily how those letters make meaningful words, paragraphs or life," said Bing Ren, PhD, head of the Laboratory of Gene Regulation at the Ludwig Institute for Cancer Research at UC San Diego. "We know, for example, that only one to two percent of the functional genome codes for proteins, but that there are highly conserved regions in the genome outside of protein-coding that affect genes and disease development. It's clear these regions do something or they would have changed or disappeared."

Chief among those regions are cis-regulatory elements, key stretches of DNA that appear to regulate the transcription of genes. Misregulation of genes can result in diseases like cancer. Using high-throughput sequencing technologies, Ren and colleagues mapped nearly 300,000 mouse cis-regulatory elements in 19 different types of tissue and cell. The unprecedented work provided a functional annotation of nearly 11 percent of the mouse genome, and more than 70 percent of the conserved, non-coding sequences shared with other mammalian species, including humans.

As expected, the researchers identified different sequences that promote or start gene activity, enhance its activity and define where it occurs in the body during development. More surprising, said Ren, was that the structural organization of the cis-regulatory elements are grouped into discrete clusters corresponding to spatial domains. "It's a case of form following function," he said. "It makes sense."

While the research is fundamentally revealing, Ren noted it is also just a beginning, a partial picture of the functional genome. Additional studies will be needed in other types of cells and at different stages of development.

"We've mapped and understand 11 percent of the genome," said Ren. "There's still a long way to march."

Co-authors are Yin Shen, Feng Yue, David F. McCleary, Zhen Ye, Lee Edsall, Samantha Kuan, Ulrich Wagner and Leonard Lee, all at the Ludwig Institute for Cancer Research; Jesse Dixon, Ludwig Institute for Cancer Research, Medical Scientist Training Program and Biomedical Sciences Graduate Program, UC San Diego; and Victor Lobanenkov, National Institute of Allergy and Infectious Diseases.

Funding for this research came, in part, from the National Human Genome Research Institute (grant R01HG003991).

About the Ludwig Institute for Cancer Research (LICR)

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>