Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria like the taste of syngas

04.12.2013
• Evonik laboratory studies have shown that biotech methods can be used successfully to produce specialty chemicals from waste gas
• Lessons learned from primordial bacteria
• A milestone for third-generation biotechnology

For the first time, Evonik Industries has managed to use biotech methods to convert syngas to pure 2-hydroxyisobutyric acid (2-HIBA) under industrial conditions. 2-HIBA is a precursor used in the manufacture of PLEXIGLAS®. Waste gas is one example of a source of syngas.

“We have shown that there is a safe way of using bacteria to turn syngas into a variety of products in the future,” says Dr. Peter Nagler, Evonik’s Chief Innovation Officer. In addition to 2-HIBA for the plastics industry, other products could include their derivatives for the cosmetics industry, or C4 alcohols for the paints and varnishes industry.

Syngases are gas mixtures consisting primarily of carbon monoxide or of carbon dioxide and hydrogen. These gases can be generated from municipal or agricultural waste, or from the waste gases produced in industries such as steel production. Syngas has been used for synthesizing chemicals for decades. For the ability to convert carbon monoxide, carbon dioxide, and hydrogen into more valuable molecules, Evonik looked to bacteria from earth’s earliest history—to a time when oxygen was not yet present in earth’s atmosphere. Certain microorganisms today still contain the genetic information for these processes. Evonik has used their enzymes to create a cell factory that generates specialty chemicals from syngas.

Evonik scientists are now working at top speed to optimize these ideas and develop them still further. “We have a long way to go before we can use bacteria for converting syngas to high-quality specialty chemicals on a large industrial scale,” says Dr. Thomas Haas, head of Biotechnology at Creavis, Evonik’s strategic innovation unit. “It will still take a couple of years until it is ready for the market.”

Evonik views biotechnology as a field with tremendous potential for innovation. The specialty chemicals manufacturer is already using biotech methods to produce high-quality products. These first-generation industrial biotechnology processes involve the use of plant oils, grains, and sugars as raw materials for fermentation. Evonik uses these materials to produce amino acids and cosmetic ingredients, among other products. The first second-generation biotechnology plants are currently under construction, and these utilize residual plant materials from agriculture and forestry. Evonik is only pursuing a few projects in this area, and is instead focusing more of its attention on third-generation biotechnology.

As Haas explains, “We’re exploring third-generation biotechnology, because in addition to sugar or residual plant materials converted to syngas, waste from other sources such as municipal waste and industrial waste gas can also serve as raw materials. That makes us less dependent not only on fossil-based raw materials, but also on renewable resources that could potentially compete with the food supply.”

2-HIBA can also be produced via chemical synthesis. Both the chemically-produced and biotech-produced products can be converted to methyl methacrylate (MMA). MMA is used in paints, varnishes, and anti-rust coatings, as well as in soft contact lenses and dental implants. Poly(methyl methacrylate) (PLEXIGLAS®) is used for creating sheets, profiles, roofs, soundproof walls, molded components for automotive engineering applications, and backlight units for illuminating flat-screen monitors and televisions. Evonik is one of the largest producers of MMA.

Following a resolution passed by the German Bundestag, this research is partly funded by the Federal Ministry of Food, Agriculture and Consumer Protection.

Company information
Evonik, the creative industrial group from Germany, is one of the world leaders in specialty chemicals. Profitable growth and a sustained increase in the value of the company form the heart of Evonik’s corporate strategy. Its activities focus on the key megatrends health, nutrition, resource efficiency and globalization. Evonik benefits specifically from its innovative prowess and integrated technology platforms.

Evonik is active in over 100 countries around the world. In fiscal 2012 more than 33,000 employees generated sales of around €13.4 billion and an operating profit (adjusted EBITDA) of about €2.4 billion (excluding Real Estate in both cases).

Disclaimer
In so far as forecasts or expectations are expressed in this press release or where our statements concern the future, these forecasts, expectations or statements may involve known or unknown risks and uncertainties. Actual results or developments may vary, depending on changes in the operating environment. Neither Evonik Industries AG nor its group companies assume an obligation to update the forecasts, expectations or statements contained in this release.

Dr. Edda Schulze | idw
Further information:
http://www.evonik.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>