Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes Appear to Play an Important Role in Brain Tumors

17.06.2011
A special group of glial cells which have the form of stars and are therefore called astroglial cells or astrocytes, seem to play a crucial role in brain tumor development and dissemination.

This was pointed out by Dr. Florian Siebzehnrubl (University of Florida College of Medicine, Gainesville, USA) on Friday, June 17, 2011, at the Brain Tumor Meeting in the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany.

In his presentation, Dr. Florian Siebzehnrubl from Professor Dennis Steindler’s laboratory illuminated the interaction between tumor stem cells and the extracellular matrix (ECM). The latter holds the tissue together and blocks the invasion of tumor cells. During the development of the nervous system, astrocytes form barriers mediated by the ECM. These immature astrocytes have similarities to neural stem cells.

“Cells that are similar to these immature astrocytes can also play a role in brain tumors,” Dr. Siebzehnrubl said. The reason is that these immature astrocytes are very similar to stem cells. Several years ago the Steindler lab was the first to discover cancer stem cells in glioblastoma, the most common and most aggressive form of brain tumors. The scientific consensus is that such tumor stem-like cells can initiate cancer and are also to blame for the fact that tumors can recur despite treatment.

“The ECM plays a key role in the development and spread of brain tumors,” Dr. Siebzehnrubl said, and he also presented new findings on a brain tumor cell that possesses a unique molecular profile (ZEB1) and which is involved in resistance to many current chemotherapeutics and thus involved in brain tumor recurrence.

A few years ago, the laboratory of Professor Helmut Kettenmann of the MDC in collaboration with the neurosurgeon Dr. Darko S. Markovic (Helios Klinikum Berlin-Buch) and Dr. Michael Synowitz (Charité – Universitätsmedizin Berlin) showed that microglia degrade the ECM by means of specific proteases, thus enabling glioblastomas to infiltrate the brain.

In a current study using animal models, Professor Steindler and his colleagues Dr. Siebzehnrubl and Dan Silver demonstrated that tumor cells that rapidly infiltrate tissue influence the molecular composition of the ECM differently than those that are less invasive. The researchers suspect that the change in behavior of the ECM may be due to the influence of tumor stem cells.

Therefore first studies are ongoing to modulate the ECM and other cancer-associated molecules so that brain tumors are cordoned off and brain tumor-initiating cells are less migratory, thus keeping them from infiltrating healthy brain tissue.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

Further reports about: ECM Medicine Molecular Target astrocytes brain tumor stem cells tumor cells

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>