Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes Appear to Play an Important Role in Brain Tumors

17.06.2011
A special group of glial cells which have the form of stars and are therefore called astroglial cells or astrocytes, seem to play a crucial role in brain tumor development and dissemination.

This was pointed out by Dr. Florian Siebzehnrubl (University of Florida College of Medicine, Gainesville, USA) on Friday, June 17, 2011, at the Brain Tumor Meeting in the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany.

In his presentation, Dr. Florian Siebzehnrubl from Professor Dennis Steindler’s laboratory illuminated the interaction between tumor stem cells and the extracellular matrix (ECM). The latter holds the tissue together and blocks the invasion of tumor cells. During the development of the nervous system, astrocytes form barriers mediated by the ECM. These immature astrocytes have similarities to neural stem cells.

“Cells that are similar to these immature astrocytes can also play a role in brain tumors,” Dr. Siebzehnrubl said. The reason is that these immature astrocytes are very similar to stem cells. Several years ago the Steindler lab was the first to discover cancer stem cells in glioblastoma, the most common and most aggressive form of brain tumors. The scientific consensus is that such tumor stem-like cells can initiate cancer and are also to blame for the fact that tumors can recur despite treatment.

“The ECM plays a key role in the development and spread of brain tumors,” Dr. Siebzehnrubl said, and he also presented new findings on a brain tumor cell that possesses a unique molecular profile (ZEB1) and which is involved in resistance to many current chemotherapeutics and thus involved in brain tumor recurrence.

A few years ago, the laboratory of Professor Helmut Kettenmann of the MDC in collaboration with the neurosurgeon Dr. Darko S. Markovic (Helios Klinikum Berlin-Buch) and Dr. Michael Synowitz (Charité – Universitätsmedizin Berlin) showed that microglia degrade the ECM by means of specific proteases, thus enabling glioblastomas to infiltrate the brain.

In a current study using animal models, Professor Steindler and his colleagues Dr. Siebzehnrubl and Dan Silver demonstrated that tumor cells that rapidly infiltrate tissue influence the molecular composition of the ECM differently than those that are less invasive. The researchers suspect that the change in behavior of the ECM may be due to the influence of tumor stem cells.

Therefore first studies are ongoing to modulate the ECM and other cancer-associated molecules so that brain tumors are cordoned off and brain tumor-initiating cells are less migratory, thus keeping them from infiltrating healthy brain tissue.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

Further reports about: ECM Medicine Molecular Target astrocytes brain tumor stem cells tumor cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>