Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes Appear to Play an Important Role in Brain Tumors

17.06.2011
A special group of glial cells which have the form of stars and are therefore called astroglial cells or astrocytes, seem to play a crucial role in brain tumor development and dissemination.

This was pointed out by Dr. Florian Siebzehnrubl (University of Florida College of Medicine, Gainesville, USA) on Friday, June 17, 2011, at the Brain Tumor Meeting in the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany.

In his presentation, Dr. Florian Siebzehnrubl from Professor Dennis Steindler’s laboratory illuminated the interaction between tumor stem cells and the extracellular matrix (ECM). The latter holds the tissue together and blocks the invasion of tumor cells. During the development of the nervous system, astrocytes form barriers mediated by the ECM. These immature astrocytes have similarities to neural stem cells.

“Cells that are similar to these immature astrocytes can also play a role in brain tumors,” Dr. Siebzehnrubl said. The reason is that these immature astrocytes are very similar to stem cells. Several years ago the Steindler lab was the first to discover cancer stem cells in glioblastoma, the most common and most aggressive form of brain tumors. The scientific consensus is that such tumor stem-like cells can initiate cancer and are also to blame for the fact that tumors can recur despite treatment.

“The ECM plays a key role in the development and spread of brain tumors,” Dr. Siebzehnrubl said, and he also presented new findings on a brain tumor cell that possesses a unique molecular profile (ZEB1) and which is involved in resistance to many current chemotherapeutics and thus involved in brain tumor recurrence.

A few years ago, the laboratory of Professor Helmut Kettenmann of the MDC in collaboration with the neurosurgeon Dr. Darko S. Markovic (Helios Klinikum Berlin-Buch) and Dr. Michael Synowitz (Charité – Universitätsmedizin Berlin) showed that microglia degrade the ECM by means of specific proteases, thus enabling glioblastomas to infiltrate the brain.

In a current study using animal models, Professor Steindler and his colleagues Dr. Siebzehnrubl and Dan Silver demonstrated that tumor cells that rapidly infiltrate tissue influence the molecular composition of the ECM differently than those that are less invasive. The researchers suspect that the change in behavior of the ECM may be due to the influence of tumor stem cells.

Therefore first studies are ongoing to modulate the ECM and other cancer-associated molecules so that brain tumors are cordoned off and brain tumor-initiating cells are less migratory, thus keeping them from infiltrating healthy brain tissue.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

Further reports about: ECM Medicine Molecular Target astrocytes brain tumor stem cells tumor cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>