Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting to darkness: How behavioral and genetic changes helped cavefish survive extreme environment

15.09.2010
University of Maryland biologists show how evolutionary changes helped compensate for the loss of vision in Mexican blind cavefish

University of Maryland biologists have identified how changes in both behavior and genetics led to the evolution of the Mexican blind cavefish (Astyanax mexicanus) from its sighted, surface-dwelling ancestor.

In research published in the August 12, 2010 online edition of the journal Current Biology, Professor William Jeffery, together with postdoctoral associates Masato Yoshizawa, and Špela Gorièki, and Assistant Professor Daphne Soares in the Department of Biology, provide new information that shows how behavioral and genetic traits coevolved to compensate for the loss of vision in cavefish and to help them find food in darkness. This is the first time that a clear link has been identified between behavior, genetics, and evolution in Mexican blind cavefish, which are considered an excellent model for studying evolution.

Why Study Blind Cave Fish

Worldwide, about 80 different species of cave-dwelling fish have evolved from surface-dwelling fish, but in most cases the surface-dwelling ancestor has disappeared. "The Mexican blind cavefish is one of the only cases where a similar ancestor still exists," explains Professor Jeffery. "Except for the loss of eyes and pigment seen in the cave-dwelling form, the surface and cave-dwellers are hard to tell apart. You can study evolution very nicely if you have both the ancestral and derived forms of evolving animals."

Jeffery is a leading expert on the developmental and evolutionary genetics of the blind cavefish. His previous research provided evidence that the loss of eyes in blind cavefish is the result of natural selection, and has inspired other researchers to take up Astyanax as a model system for studying eye loss and evolution in general. Studying the evolution of cave fish may help provide clues about human forms of blindness such as macular degeneration and cataracts, and the University of Maryland team is also exploring how studies of cave fish metabolism might be used to better understand the underlying causes of obesity and diabetes in humans. "It turns out that many of the mutations in genes studied in model organisms like Astyanax are the same genes that are involved in human disease," says Jeffery. "By studying evolution, you can see what sort of mutations and genes are present in the population and how these can be selected for or against."

Linking Behavior, Genetics, and Evolution
Jeffery's research team showed how an adaptive behavior found in blind cavefish that gives them an advantage in locating food in the dark is linked to a genetic trait. "Vibration Attraction Behavior" (or VAB) is the ability of fish to swim toward the source of a water disturbance in darkness. Postdoctoral associate Masato Yoshizawa measured this behavioral response in both wild caught and laboratory raised cave and surface-dwelling fish using a vibrating rod at different frequencies as a stimulus. Most cavefish displayed VAB and would swim toward the vibrating rod and poke at it, while few surface fish did.

This behavior is advantageous for feeding success in the dark caves where food sources are limited and large predators are absent. "Outside the cave, however, there are many predators," explains Jeffery, "and indiscriminately going to a vibration would be a certain risk for predation for a surface-dwelling fish."

The cavefish responded most frequently and strongly to a vibration at a frequency of 35 Hz. "This frequency falls within the range that is detected by the superficial neuromasts," explained Yoshizawa. "These specialized hair cells are part of the fish's lateral line, which is the sensory organ used to detect movement and vibration in the surrounding water."

To confirm the role of the superficial neuromasts (SN) and the lateral line, Yoshizawa measured the VAB after he inhibited the function of the superficial neuromasts in both cavefish and surface fish. "I used a non-toxic glue on their cheek region, and then released them in the water. This glue then peeled off from their skin as they moved in the water, and removed the superficial neuromast hair cells, or at least reduced their sensing ability," explains Yoshizawa. "You can imagine that it is kind of like waxing your legs."

Without the sensing ability of the SN, the cavefish no longer exhibited the VAB, while the surface dwelling fish did not exhibit any more or less VAB. The team went on to explore the role that the number and size of the SN played in VAB, as the cave dwelling fish have more and larger SN cells and were the most likely to exhibit the adaptive behavior. Yoshizawa made a genetic cross between the surface fish and the cave dwelling fish to get a hybrid species. The cave dwelling fish, who have more and larger superficial neuromast (SN) cells, were most likely to exhibit the adaptive behavior. The hybrid fish showed an intermediate number of neuromasts and also exhibited an intermediate vibration attraction behavior reaction -- more than the surface fish, but less than the cave fish.

From this, the research team concluded that the VAB and SN enhancement coevolved to compensate for loss of vision and to help blind cavefish find food in darkness. This study adds important new information about how Mexican blind cavefish have adapted to their extreme environment through evolutionary changes. The next step in this research will be to identify the gene or genes involved in VAB, which offers the exciting possibility of understanding this behavioral shift at the molecular level.

Kelly Blake | EurekAlert!
Further information:
http://www.umd.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>