Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A SMART(er) way to track influenza

11.06.2012
In April 2009, the world took notice as reports surfaced of a virus in Mexico that had mutated from pigs and was being passed from human to human.

The H1N1 "swine flu," as the virus was named, circulated worldwide, killing more than 18,000 people, according to the World Health Organization. The Centers for Disease Control and Prevention in the United States said it was the first global pandemic in more than four decades.

Swine flu will not be the last viral mutation to cause a worldwide stir. One way to contain the next outbreak is by administering tests at the infection's source, pinpointing and tracking the pathogen's spread in real time. But such efforts have been stymied by devices that are costly, unwieldy and unreliable. Now, biomedical engineers at Brown University and Memorial Hospital in Rhode Island have developed a biochip that can detect the presence of influenza by zeroing in on the specific RNA sequence and then using tiny magnets in a tube to separate the flu-ridden sequence from the rest of the RNA strand. The result: A reliable, fast prototype of a flu-detection test that potentially can be carried in a first-aid kit and used as easily as an iPhone.

"We wanted to make something simple," said Anubhav Tripathi, associate professor of engineering at Brown and the corresponding author on the paper, published in the Journal of Molecular Diagnostics. "It's a low-cost device for active, on-site detection, whether it's influenza, HIV, or TB (tuberculosis)."

The Brown assay is called SMART, which stands for "A Simple Method for Amplifying RNA Targets." Physically, it is essentially a series of tubes, with bulbs on the ends of each, etched like channels into the biochip.

There are other pathogen-diagnostic detectors, notably the Polymerase Chain Reaction device (which targets DNA) and the Nucleic Acid Sequence Based Amplification (which also targets RNA). The SMART detector is unique in that the engineers use a DNA probe with base letters that match the code in the targeted sequence. This ensures the probe will latch on only to the specific RNA strand being assayed. The team inundates the sample with probes, to ensure that all RNA molecules bind to a probe.

"The device allows us to design probes that are both sensitive and specific," Tripathi said.

This approach creates excess — that is, probes with no RNA partners. That's OK, because the Brown-led team then attached the probes to 2.8 micron magnetic beads that carry the genetic sequence for the influenza RNA sequence. The engineers then use a magnet to slowly drag the RNA-probe pairs collected in the bulb through a tube that narrows to 50 microns and then deposit the probes at a bulb at the other end. This convergence of magnetism (the magnetized probes and the dragging magnets) and microfluidics (the probes' movement through the narrowing channel and the bulbs) serves to separate the RNA-probe pairs from the surrounding biological debris, allowing clinicians to isolate the influenza strains readily and rapidly for analysis. The team reports that it tracks the RNA-probe beads flawlessly at speeds up to 0.75 millimeters per second.

"When we amplify the probes, we have disease detection," Tripathi said. "If there is no influenza, there will be no probes (at the end bulb). This separation part is crucial."

Once separated, or amplified, the RNA can be analyzed using conventional techniques, such as nucleic acid sequence-based amplification (NASBA).

The chips created in Tripathi's lab are less than two inches across and can fit four tube-and-bulb channels. Tripathi said the chips could be commercially manufactured and made so more channels could be etched on each.

The team is working on separate technologies for biohazard detection.

Stephanie McCalla, who earned her doctorate at Brown last year and is now at the California Institute of Technology, is the first author on the paper. Brown professors of medicine Steven Opal and Andrew Artenstein, with Carmichael Ong and Aartik Sarma, who earned their undergraduate degrees at Brown, are contributing authors.

The U.S. National Institutes of Health and the National Science Foundation funded the research.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>