Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a single layer of cells control a leaf's size?

26.02.2010
The role of epidermal cells in determining leaf size and shape

Ever looked carefully at the leaves on a plant and noticed their various sizes and shapes? Why are they different? What controls the size and shape of each individual leaf? Very little is known about the developmental control of leaf size and shape, and understanding the mechanisms behind this is a major issue in plant biology.

A leaf's size is determined by a combination of cell number, cell size, and intercellular space. Michael Marcotrigiano from Smith College, Massachusetts, wanted to find out what role cell layers played in regulating leaf size and shape. He utilized a powerful tool—the synthesis of graft chimeras—that has allowed him to carefully analyze the developmental regulation of leaf size and shape in Nicotiana and has published his findings in the February issue of the American Journal of Botany (http://www.amjbot.org/cgi/content/full/97/2/224).

By grafting plants of different Nicotiana genotypes Marcotrigiano was able to recover shoots from the graft union that were chimeras. These shoots were composed of both genotypes. Eventually he recovered leaves with two genetically distinct cell layers. He grafted N. tabacum, a large-leaf genotype, and N. glaucum, a small-leaf genotype, to produce leaves where the resulting epidermal cell layer was a different genotype than the mesophyll cell layer—but on only one side of the leaf, allowing for direct comparison of the growth of the leaf from one side to the other. Thus, one side of the leaf could act as a "control" for the other side of the leaf. This enabled him to set up some nicely designed comparisons where on one side of the leaf the outer cell layer (the epidermis) differed in genotype from the rest of the leaf.

"Since leaves generally vary in size along the length of the stem and leaf size is strongly influenced by environmental factors, my method allowed me to compare one side of a leaf to the other, negating the complications that arise when comparing different leaves on a single plant or leaves on different plants," Marcotrigiano said.

Creating these graft chimeras was time-consuming and involved an element of chance; often the growing tip of the chimeral shoots reverted back to a non-chimeral shoot rendering the leaves generated from that point on useless for analysis. However, over the past decade enough leaves were recovered that were perfectly bisected, homogeneous on one side of the midvein and with a unique epidermis on the other. This allowed Marcotrigiano to use them to examine how leaf cell layer affects leaf size and shape.

Marcotrigiano's most striking finding was the important role that the epidermal cells played in determining leaf size. He found that leaves grew asymmetrically when one side of the midvein contained identical cell layer arrangements and the other side contained epidermal cells that differed genetically from the mesophyll cells. When big-leaf epidermal cells surrounded small-leaf mesophyll cells in an otherwise all small-genotype leaf, the big-leaf epidermal cells caused that side of the leaf to be bigger than the other side. In contrast, when small-leaf epidermal cells surrounded big-leaf mesophyll cells in an otherwise all big-genotype leaf, the small-leaf epidermal cells caused that side to be smaller than the other side.

Epidermal cells not only controlled overall leaf size, but also influenced the number of cells produced in the mesophyll layer. For example, small-leaf epidermal cells surrounding big-leaf mesophyll cells caused the mesophyll cells to have many fewer cell divisions than when they were surrounded by big-leaf epidermal cells. Interestingly, the epidermal cells did not influence, or change, the size of the mesophyll cells.

Marcotrigiano concludes that while regulation of leaf size is complex and influenced by many factors and many genes, his findings show that communication between adjacent cell layers plays an important role in determining leaf size. Cells in one tissue layer can control the rate of division of cells in another tissue layer, which in turn influences overall leaf size.

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/cgi/content/full/97/2/224. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>