Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Grand Voyage for Tiny Organisms

19.08.2015

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading to significant changes in the native flora and fauna of the Mediterranean.


The benthic foraminifera Pararotalia calcariformata on the substrate macro algae Jania rubens

Photo: C. Schmidt, MARUM

An international team of researchers reported in a recent issue of the international journal Plos One that warming in the Mediterranean caused by climate change could promote the invasion of tiny marine animals called foraminifera.

The foraminifera Pararotalia is a very unimpressive animal at first glance. It is unicellular and very small. Despite this, foraminifera play an important role in the stabilization of ecosystems in the coastal zone. The calcite shells of dead animals form the foundation for many reef ecosystems and have a fundamental importance as so called-ecosystem engineers.

Foraminiferal specialists such as Dr. Christiane Schmidt can identify foraminifera by the shape of their calcite shells. Together with her future MARUM colleagues the geo-ecologist, who will return to Bremen after completing a short-term fellowship in Japan, collected samples of living foraminifera at the Nachscholim National Park, south of Haifa, from the spring of 2012 to autumn 2013.

One object of their search was the newly described Foraminifera Pararotalia, which was first discovered in 1994 in the eastern Mediterranean and has multiplied explosively there since then.

“To date there is no evidence of the occurrence of this species in the Red Sea,” says Dr. Schmidt. MARUM researcher Dr. Raphael Morard, who conducted the molecular identification on this species adds: “With these methods we can show that Pararotalia is indeed an invasive species that originates from the Indian Ocean and the Pacific.”

The success of the genus Pararotalia in the Mediterranean can be attributed to its ecology. This foraminifer lives in symbiosis with tiny microalgae. This symbiosis provides two advantages: foremost, the algae provide food for the Pararotalia through photosynthesis, and this also promotes the growth of the calcite shell of its host.

“Basically it is the temperature regime in the eastern Mediterranean that dictates whether species such as Pararotalia can survive or not,” Dr. Schmidt says. “We have cultured this species in the laboratory and shown that its thermal optimum is around 28°C, but below 20°C and above 35°C it has extreme difficulty surviving.

Next, the team developed a computer model to determine which regions in the eastern Mediterranean are especially well suited for Pararotalia. The model takes into account all occurrence records of this species published to date and, based on the light regime and sea-water turbidity in these locations, both important factors for the survival of the species, models where it is likely to occur now and in the future. The model gives clear results: the coastal ecosystems of Israel and Lebanon are currently the best-suited habitats for this species, but the species currently also lives in Syria and southeastern Turkey.

The model also suggests that in the future Pararotalia will likely expand to areas in the Mediterranean that are still too cold for its survival today. Increasing sea-water temperatures will lead to migration of the species into the western Mediterranean. Co-author Dr. Anna Weinmann, researcher at the University of Bonn says: “Our model clearly shows that by 2100 Pararotalia will likely be found in the Aegean, the Ionic Sea, in Greece, and in Libya due to transport by the prevailing currents.”

Publication:
Christiane Schmidt, Raphael Morard, Ahuva Almogi-Labin, Anna E. Weinmann, Danna Titelboim, Sigal Abramovich, Michal Kucera
Recent Invasion of the Symbiont-Bearing Foraminifera Pararotalia into the Eastern Mediterranean Facilitated by the Ongoing Warming Trend
In: PLOS One online, 13th August 2015, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132917

More information / interview requests / photos:

Jana Stone
MARUM Science Communication
Phone ++49 - 421 - 218-65541
E-mail: jstone@marum.de

MARUM aims at understanding the role of the oceans in the Earth’s system by employing state-of-the-art methods. It examines the significance of the oceans within the framework of global change, quantifies interactions between the marine geosphere and biosphere, and provides information for sustainable use of the ocean.

MARUM comprises the DFG research center and the cluster of excellence "The Ocean in the Earth System".

Weitere Informationen:

https://www.marum.de/en/A_Grand_Voyage_for_Tiny_Organisms.html
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132917

Albert Gerdes | idw - Informationsdienst Wissenschaft

Further reports about: MARUM Mediterranean Ocean Organisms calcite ecosystems foraminifera species symbiosis

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>