Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Should I stay or should I go?' CSHL scientists link brain cell types to behavior

27.05.2013
The activity of 2 specific neuron types correlates with foraging decisions in mice

You are sitting on your couch flipping through TV channels trying to decide whether to stay put or get up for a snack. Such everyday decisions about whether to "stay" or to "go" are supported by a brain region called the anterior cingulate cortex (ACC), which is part of the prefrontal cortex. Neuroscientists from Cold Spring Harbor Laboratory (CSHL) have now identified key circuit elements that contribute to such decisions in the ACC.

CSHL Associate Professor Adam Kepecs and his team today publish results that, for the first time, link specific brain cell types to a particular behavior pattern in mice – a "stay or go" pattern called foraging behavior. The paper, published online in Nature, shows that the firing of two distinct types of inhibitory neurons, known as somatostatin (SOM) and parvalbumin (PV) neurons, has a strong correlation with the start and end of a period of foraging behavior.

Linking specific neuronal types to well-defined behaviors has proved extremely difficult. "There's a big gap in our knowledge between our understanding of neuron types in terms of their physical location and their place in any given neural circuit, and what these neurons actually do during behavior," says Kepecs.

Part of the problem is the technical challenge of doing these studies in live, freely behaving mice. Key to solving that problem is a mouse model developed in the laboratory of CSHL Professor Z. Josh Huang. The mouse has a genetic modification that allows investigators to target a specific population of neurons with any protein of interest.

Kepecs' group, led by postdocs Duda Kvitsiani and Sachin Ranade, used this mouse to label specific neuron types in the ACC with a light-activated protein – a technique known as optogenetic tagging. Whenever they shone light onto the brains of the mice they were recording from, only the tagged PV and SOM neurons responded promptly with a 'spike' in their activity, enabling the researchers to pick them out from the vast diversity of cellular responses seen at any given moment.

The team recorded neural activity in the ACC of these mice while they engaged in foraging behavior. They discovered that the PV and SOM inhibitory neurons responded around the time of the foraging decisions -- in other words whether to stay and drink or go and explore elsewhere. Specifically, when the mice entered an area where they could collect a water reward, SOM inhibitory neurons shut down and entered a period of low-level activity, thereby opening a 'gate' for information to flow in to ACC. When the mice decided to leave that area and look elsewhere, PV inhibitory neurons fired and abruptly reset cell activity.

"The brain is complex and continuously active, so it makes sense that these two types of inhibitory interneurons define the boundaries of a behavior such as foraging, opening and then closing the 'gate' within a particular neural circuit through changes in their activity," says Kepecs.

This is an important advance, addressing a problem in behavioral neuroscience that scientists call "the cortical response zoo." When researchers record neural activity in cortex during behavior, and they don't know which type of neurons they are recording from, a bewildering array of responses is seen. This greatly complicates the task of interpretation. Hence the significance of the Kepecs team's results, for the first time showing that specific cortical neuron types can be linked to specific aspects of behavior.

"We think about the brain and behavior in terms of levels; what the cell types are and the circuits or networks they form; which regions of the brain they are in; and what behavior is modulated by them," explains Kepecs. "By observing that the activity of specific cell types in the prefrontal cortex is correlated with a behavioral period, we have identified a link between these levels."

"Distinct behavioural and network correlates of two interneuron types in prefrontal cortex" is published online in Nature on May 26, 2013. The authors are: D. Kvitsiani, S. Ranade, B. Hangya, H. Taniguchi, Z. J. Huang, A. Kepecs. The paper can be obtained online at doi:10.1038/nature12176.

The research described in this release was supported by the following grants and funding agencies: Sloan, Whitehall and Klingenstein Foundations to A.K. and the NIH NINDS (NS075531). B.H. received support from the Swartz Foundation and Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013). D.K. received support from The Robert Lee and Clara Guthrie Patterson Trust Postdoctoral Fellowship and Human Frontier Science Program (2008-2011).

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

Written by:

Edward Brydon Ph.D., Science Writer | ebrydon@cshl.edu | 516-367-8455

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>