Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Should I stay or should I go?' CSHL scientists link brain cell types to behavior

27.05.2013
The activity of 2 specific neuron types correlates with foraging decisions in mice

You are sitting on your couch flipping through TV channels trying to decide whether to stay put or get up for a snack. Such everyday decisions about whether to "stay" or to "go" are supported by a brain region called the anterior cingulate cortex (ACC), which is part of the prefrontal cortex. Neuroscientists from Cold Spring Harbor Laboratory (CSHL) have now identified key circuit elements that contribute to such decisions in the ACC.

CSHL Associate Professor Adam Kepecs and his team today publish results that, for the first time, link specific brain cell types to a particular behavior pattern in mice – a "stay or go" pattern called foraging behavior. The paper, published online in Nature, shows that the firing of two distinct types of inhibitory neurons, known as somatostatin (SOM) and parvalbumin (PV) neurons, has a strong correlation with the start and end of a period of foraging behavior.

Linking specific neuronal types to well-defined behaviors has proved extremely difficult. "There's a big gap in our knowledge between our understanding of neuron types in terms of their physical location and their place in any given neural circuit, and what these neurons actually do during behavior," says Kepecs.

Part of the problem is the technical challenge of doing these studies in live, freely behaving mice. Key to solving that problem is a mouse model developed in the laboratory of CSHL Professor Z. Josh Huang. The mouse has a genetic modification that allows investigators to target a specific population of neurons with any protein of interest.

Kepecs' group, led by postdocs Duda Kvitsiani and Sachin Ranade, used this mouse to label specific neuron types in the ACC with a light-activated protein – a technique known as optogenetic tagging. Whenever they shone light onto the brains of the mice they were recording from, only the tagged PV and SOM neurons responded promptly with a 'spike' in their activity, enabling the researchers to pick them out from the vast diversity of cellular responses seen at any given moment.

The team recorded neural activity in the ACC of these mice while they engaged in foraging behavior. They discovered that the PV and SOM inhibitory neurons responded around the time of the foraging decisions -- in other words whether to stay and drink or go and explore elsewhere. Specifically, when the mice entered an area where they could collect a water reward, SOM inhibitory neurons shut down and entered a period of low-level activity, thereby opening a 'gate' for information to flow in to ACC. When the mice decided to leave that area and look elsewhere, PV inhibitory neurons fired and abruptly reset cell activity.

"The brain is complex and continuously active, so it makes sense that these two types of inhibitory interneurons define the boundaries of a behavior such as foraging, opening and then closing the 'gate' within a particular neural circuit through changes in their activity," says Kepecs.

This is an important advance, addressing a problem in behavioral neuroscience that scientists call "the cortical response zoo." When researchers record neural activity in cortex during behavior, and they don't know which type of neurons they are recording from, a bewildering array of responses is seen. This greatly complicates the task of interpretation. Hence the significance of the Kepecs team's results, for the first time showing that specific cortical neuron types can be linked to specific aspects of behavior.

"We think about the brain and behavior in terms of levels; what the cell types are and the circuits or networks they form; which regions of the brain they are in; and what behavior is modulated by them," explains Kepecs. "By observing that the activity of specific cell types in the prefrontal cortex is correlated with a behavioral period, we have identified a link between these levels."

"Distinct behavioural and network correlates of two interneuron types in prefrontal cortex" is published online in Nature on May 26, 2013. The authors are: D. Kvitsiani, S. Ranade, B. Hangya, H. Taniguchi, Z. J. Huang, A. Kepecs. The paper can be obtained online at doi:10.1038/nature12176.

The research described in this release was supported by the following grants and funding agencies: Sloan, Whitehall and Klingenstein Foundations to A.K. and the NIH NINDS (NS075531). B.H. received support from the Swartz Foundation and Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013). D.K. received support from The Robert Lee and Clara Guthrie Patterson Trust Postdoctoral Fellowship and Human Frontier Science Program (2008-2011).

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

Written by:

Edward Brydon Ph.D., Science Writer | ebrydon@cshl.edu | 516-367-8455

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>