Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why women wiggling in high heels could help improve prosthetic limbs and robots

09.05.2012
People walking normally, women tottering in high heels and ostriches strutting all exert the same forces on the ground despite very differently-shaped feet, according to research funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. The finding suggests that prosthetic lower limbs and robots' legs could be made more efficient by making them less human-like and more like the prosthetics used by 'Blade Runner' Oscar Pistorius.

Walking involves a repeated process referred to by scientists as 'crash, vault, push' – landing ('crashing') on the heel, vaulting over the stationary leg and then pushing off with the toes. This is the most economical way of walking and, as research published today in the Journal of the Royal Society Interface shows, the force exerted on the ground is the same for people walking normally or in high heels and for ostriches.

Dr Tatjana Hubel from the Royal Veterinary College explains: "Despite vastly differing arrangements of joints and hip wiggles, humans walking normally, women in extremely high heels and ostriches all produce strikingly similar forces when walking. This is the most mechanically economical way of walking. We do everything we can to make the forces follow the same pattern, which is why for example women wiggle their bottoms when they're in high heels. The question for us is, why is the human foot shaped the way that it is and not, say, like an ostrich's?"

When scientists model how the leg moves, they tend to simplify the movement and view the leg as a stick with a block on top (the body) which moves in an inverted pendulum motion. In this simplified model, the shape of the human foot does not make sense. But in fact, the human leg is more complicated than this; it contains muscles that likely evolved out of a tension between being optimised for walking and being more efficient at running. As humans are intelligent and able to plan and use tools, being able to move quickly to catch a prey or to evade a predator is not essential.

The shape of the human foot means that when the foot is flat on the ground, all the force goes through the ankles, allowing the muscles to support the weight of the body whilst being largely unloaded during the 'vault' stage. When muscles bear a load, they get tired easily, even if they are doing no work. For example, if we hold our arms outstretched, after a few minutes they will grow tired; by comparison, a JCB digger can extend its arm indefinitely.

The researchers believe this finding may have implications for the design of better prosthetic limbs for above-knee amputees and for the legs of humanoid robots. These might be improved by bearing more resemblance to an ostrich leg than that of a human.

Dr Jim Usherwood, a Wellcome Trust Senior Research Fellow at the Royal Veterinary College, explains: "If you want to make a good prosthetic foot but don't care what it looks like, you should put the motor – in this case, the ankle – as far up the leg as possible, where it can provide the power without making the feet heavy and hard to swing backwards and forwards. There's no point in putting the motor at the end of the foot, where it makes the leg more difficult to swing forwards – important in both walking and running.

"Some clever prosthetics copy the ankle and are very human-like, which is fine for prosthetics to replace the foot, but for above-knee amputee, a typical prosthetic leg which is very human-like is heavy and hard to move around. It's much better to have an ostrich foot at the end of a very lightweight leg.

An example of this kind of prosthetic already in use are the blades used by Paralympic athlete Oscar Pistorius – the 'Blade Runner'. These blades are light, springy and without a heel, similar to an ostrich's legs, which are optimised for running from predators rather than for walking.

Jen Middleton | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>