Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems Biology in Nephrology:  SysKid Researchers at the European Renal Congress Reveal a Picture of Complex and Dynamic

25.06.2010
At the Congress of the European Renal Association taking place in Munich from 25 to 28 June 2010 scientists from the large integrated EU research project SysKid will provide an overview of how research strategies known as »omics« for short can be used in nephrology.

»Omics« can, for instance, help researchers analyse the genome or all the proteins contained in a cell. Together with clinical and epidemiological findings these data provide not only new insights into renal function but also pave the way for the development of new strategies to combat chronic kidney disease.

The flow of data from the laboratories of geneticists and molecular biologists has grown into a flood in recent years. The twenty-five groups of researchers from fifteen countries who have been working together for the past five months on a large integrated research project known by the acronym SysKid aim to use the instruments of systems biology to channel and link these data in the field of nephrology and thus allow them to be utilised for medical research.

Genomics

»So-called association studies have in recent years allowed numerous genes to be discovered that play in a role in the development of chronic kidney disease«, Professor Rainer Oberbauer from the Medical University Vienna explains. The impact of these genes varies, how-ever. They have a mutual effect on one another and are also influenced by external factors – in other words, they display the typical traits of a »multi-factor disease«. The processes that lead to chronic kidney disease are much more complex than is generally assumed. Not least for this reason the predictability of how kidney disease will progress and how it will respond to treatment is limited. »Our goal must therefore be to diagnose the processes that cause the disease in an individual patient so that we can target treatment more precisely”, Oberbauer says.

Transcriptomics

»Analysis of the genetic information transcribed in the genetic transmitter RNA clearly shows that thinking of disease in terms of single factors – one gene is responsible for each disease – makes no sense for the overwhelming majority of diseases«, says Prof. Dr. Gert Mayer from the Medical University Innsbruck. »What actually happens is that whole networks change«, the nephrologist continues. »We can assume that diseases are usually the result of an imbalance between ‘protective’ and ‘harmful’ networks«, Mayer continues, describing the new approach of researchers. Even chronic diseases should be seen as a kind of ‘balance’ between protection and damage, which should also be taken into account in treating them.

In order to test such hypotheses researchers need to order the huge amounts of data obtained from analyses of genes and proteins to find out which of them are significant. To do this requires not only complex methods from bioinformatics and systems biology. »Ultimately it will be necessary«, says Gert Mayer, »to test the findings provided by these new technologies in conventional systems«.

Proteomics

SysKid research teams have already done this in one field, as Professor Harald Mischak from the Biotech company mosaiques diagnostics in Hannover reports at the Munich congress. Together with scientists in Denmark and Australia, Mischak’s team analysed patterns of particular protein substances, so-called biomarkers, in urine samples from diabetes patients, which doctors had collected in long-term studies over many years and frozen for research purposes. The scientists were able to show that changes in protein patterns in urine allow kidney disease to be detected at a very early stage, long before conventional tests would provide any indication of the disease. »If the disease is treated in this early phase progress could be prevented or even aboided«, Mischak says.

Systems biology

»We are optimistic, that the ‘omics revolution’ will provide us with sets of data that will enable us to analyse even complex diseases«, says Dr. Bernd Mayer, managing partner of the R&D company emergentec biodevelopment GmbH, Vienna, whose team is coordinating SysKid. But Mayer is equally convinced that the researchers still have to do their homework if they are to use bioinformatics to optimise the management and integration of already existing and new data: »Method development therefore has an important role to play in SysKid«. Nevertheless, systems biology, which seeks to use new insights into networked and dynamic life processes to piece together a complex puzzle, is still in its infancy. »I am optimistic, however”, says Mayer, making a bold prediction, »that systems biology will have a major influence on clinical research in the future and that the manifold possibilities offered by bioinformatics for analysis and integration of data will have a big role to play in this«.

The keywords are »omics« and »systems biology« in nephrology
»Only once we begin thinking in terms of networks and see the cell, the organ and the organism as a dynamic system that tries to maintain a stable balance (and it has many ways of doing so) will we make the advancements necessary to develop diagnostic, preventive and therapeutic strategies to combat chronic kidney disease.«

Prof. Dr. Gert Mayer, Department of Internal Medicine IV, Nephrology and Hypertension, Medical University of Innsbruck, Austria

Media Contact: Barbara Ritzert · ProScience Communications GmbH · Andechser Weg 17 · 82343 Pöcking · Fon: ++49 (08)157 9397-0 · Fax: +49 (0)8157 9397-97 · media@syskid.eu · www.syskid.eu

Barbara Ritzert | idw
Further information:
http://www.syskid.eu

More articles from Interdisciplinary Research:

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

nachricht Standard BMI inadequate for tracking obesity during leukemia therapy
29.01.2016 | Children's Hospital Los Angeles

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

High-purity plastic parts: the search for inclusions

25.07.2016 | Machine Engineering

Newly discovered material property may lead to high temp superconductivity

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>