Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems Biology in Nephrology:  SysKid Researchers at the European Renal Congress Reveal a Picture of Complex and Dynamic

25.06.2010
At the Congress of the European Renal Association taking place in Munich from 25 to 28 June 2010 scientists from the large integrated EU research project SysKid will provide an overview of how research strategies known as »omics« for short can be used in nephrology.

»Omics« can, for instance, help researchers analyse the genome or all the proteins contained in a cell. Together with clinical and epidemiological findings these data provide not only new insights into renal function but also pave the way for the development of new strategies to combat chronic kidney disease.

The flow of data from the laboratories of geneticists and molecular biologists has grown into a flood in recent years. The twenty-five groups of researchers from fifteen countries who have been working together for the past five months on a large integrated research project known by the acronym SysKid aim to use the instruments of systems biology to channel and link these data in the field of nephrology and thus allow them to be utilised for medical research.

Genomics

»So-called association studies have in recent years allowed numerous genes to be discovered that play in a role in the development of chronic kidney disease«, Professor Rainer Oberbauer from the Medical University Vienna explains. The impact of these genes varies, how-ever. They have a mutual effect on one another and are also influenced by external factors – in other words, they display the typical traits of a »multi-factor disease«. The processes that lead to chronic kidney disease are much more complex than is generally assumed. Not least for this reason the predictability of how kidney disease will progress and how it will respond to treatment is limited. »Our goal must therefore be to diagnose the processes that cause the disease in an individual patient so that we can target treatment more precisely”, Oberbauer says.

Transcriptomics

»Analysis of the genetic information transcribed in the genetic transmitter RNA clearly shows that thinking of disease in terms of single factors – one gene is responsible for each disease – makes no sense for the overwhelming majority of diseases«, says Prof. Dr. Gert Mayer from the Medical University Innsbruck. »What actually happens is that whole networks change«, the nephrologist continues. »We can assume that diseases are usually the result of an imbalance between ‘protective’ and ‘harmful’ networks«, Mayer continues, describing the new approach of researchers. Even chronic diseases should be seen as a kind of ‘balance’ between protection and damage, which should also be taken into account in treating them.

In order to test such hypotheses researchers need to order the huge amounts of data obtained from analyses of genes and proteins to find out which of them are significant. To do this requires not only complex methods from bioinformatics and systems biology. »Ultimately it will be necessary«, says Gert Mayer, »to test the findings provided by these new technologies in conventional systems«.

Proteomics

SysKid research teams have already done this in one field, as Professor Harald Mischak from the Biotech company mosaiques diagnostics in Hannover reports at the Munich congress. Together with scientists in Denmark and Australia, Mischak’s team analysed patterns of particular protein substances, so-called biomarkers, in urine samples from diabetes patients, which doctors had collected in long-term studies over many years and frozen for research purposes. The scientists were able to show that changes in protein patterns in urine allow kidney disease to be detected at a very early stage, long before conventional tests would provide any indication of the disease. »If the disease is treated in this early phase progress could be prevented or even aboided«, Mischak says.

Systems biology

»We are optimistic, that the ‘omics revolution’ will provide us with sets of data that will enable us to analyse even complex diseases«, says Dr. Bernd Mayer, managing partner of the R&D company emergentec biodevelopment GmbH, Vienna, whose team is coordinating SysKid. But Mayer is equally convinced that the researchers still have to do their homework if they are to use bioinformatics to optimise the management and integration of already existing and new data: »Method development therefore has an important role to play in SysKid«. Nevertheless, systems biology, which seeks to use new insights into networked and dynamic life processes to piece together a complex puzzle, is still in its infancy. »I am optimistic, however”, says Mayer, making a bold prediction, »that systems biology will have a major influence on clinical research in the future and that the manifold possibilities offered by bioinformatics for analysis and integration of data will have a big role to play in this«.

The keywords are »omics« and »systems biology« in nephrology
»Only once we begin thinking in terms of networks and see the cell, the organ and the organism as a dynamic system that tries to maintain a stable balance (and it has many ways of doing so) will we make the advancements necessary to develop diagnostic, preventive and therapeutic strategies to combat chronic kidney disease.«

Prof. Dr. Gert Mayer, Department of Internal Medicine IV, Nephrology and Hypertension, Medical University of Innsbruck, Austria

Media Contact: Barbara Ritzert · ProScience Communications GmbH · Andechser Weg 17 · 82343 Pöcking · Fon: ++49 (08)157 9397-0 · Fax: +49 (0)8157 9397-97 · media@syskid.eu · www.syskid.eu

Barbara Ritzert | idw
Further information:
http://www.syskid.eu

More articles from Interdisciplinary Research:

nachricht Platform for smart assistance systems
13.08.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Early detection of highly pathogenic influenza viruses
22.06.2015 | Justus-Liebig-Universität Gießen

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>