Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Systems Biology in Nephrology:  SysKid Researchers at the European Renal Congress Reveal a Picture of Complex and Dynamic

At the Congress of the European Renal Association taking place in Munich from 25 to 28 June 2010 scientists from the large integrated EU research project SysKid will provide an overview of how research strategies known as »omics« for short can be used in nephrology.

»Omics« can, for instance, help researchers analyse the genome or all the proteins contained in a cell. Together with clinical and epidemiological findings these data provide not only new insights into renal function but also pave the way for the development of new strategies to combat chronic kidney disease.

The flow of data from the laboratories of geneticists and molecular biologists has grown into a flood in recent years. The twenty-five groups of researchers from fifteen countries who have been working together for the past five months on a large integrated research project known by the acronym SysKid aim to use the instruments of systems biology to channel and link these data in the field of nephrology and thus allow them to be utilised for medical research.


»So-called association studies have in recent years allowed numerous genes to be discovered that play in a role in the development of chronic kidney disease«, Professor Rainer Oberbauer from the Medical University Vienna explains. The impact of these genes varies, how-ever. They have a mutual effect on one another and are also influenced by external factors – in other words, they display the typical traits of a »multi-factor disease«. The processes that lead to chronic kidney disease are much more complex than is generally assumed. Not least for this reason the predictability of how kidney disease will progress and how it will respond to treatment is limited. »Our goal must therefore be to diagnose the processes that cause the disease in an individual patient so that we can target treatment more precisely”, Oberbauer says.


»Analysis of the genetic information transcribed in the genetic transmitter RNA clearly shows that thinking of disease in terms of single factors – one gene is responsible for each disease – makes no sense for the overwhelming majority of diseases«, says Prof. Dr. Gert Mayer from the Medical University Innsbruck. »What actually happens is that whole networks change«, the nephrologist continues. »We can assume that diseases are usually the result of an imbalance between ‘protective’ and ‘harmful’ networks«, Mayer continues, describing the new approach of researchers. Even chronic diseases should be seen as a kind of ‘balance’ between protection and damage, which should also be taken into account in treating them.

In order to test such hypotheses researchers need to order the huge amounts of data obtained from analyses of genes and proteins to find out which of them are significant. To do this requires not only complex methods from bioinformatics and systems biology. »Ultimately it will be necessary«, says Gert Mayer, »to test the findings provided by these new technologies in conventional systems«.


SysKid research teams have already done this in one field, as Professor Harald Mischak from the Biotech company mosaiques diagnostics in Hannover reports at the Munich congress. Together with scientists in Denmark and Australia, Mischak’s team analysed patterns of particular protein substances, so-called biomarkers, in urine samples from diabetes patients, which doctors had collected in long-term studies over many years and frozen for research purposes. The scientists were able to show that changes in protein patterns in urine allow kidney disease to be detected at a very early stage, long before conventional tests would provide any indication of the disease. »If the disease is treated in this early phase progress could be prevented or even aboided«, Mischak says.

Systems biology

»We are optimistic, that the ‘omics revolution’ will provide us with sets of data that will enable us to analyse even complex diseases«, says Dr. Bernd Mayer, managing partner of the R&D company emergentec biodevelopment GmbH, Vienna, whose team is coordinating SysKid. But Mayer is equally convinced that the researchers still have to do their homework if they are to use bioinformatics to optimise the management and integration of already existing and new data: »Method development therefore has an important role to play in SysKid«. Nevertheless, systems biology, which seeks to use new insights into networked and dynamic life processes to piece together a complex puzzle, is still in its infancy. »I am optimistic, however”, says Mayer, making a bold prediction, »that systems biology will have a major influence on clinical research in the future and that the manifold possibilities offered by bioinformatics for analysis and integration of data will have a big role to play in this«.

The keywords are »omics« and »systems biology« in nephrology
»Only once we begin thinking in terms of networks and see the cell, the organ and the organism as a dynamic system that tries to maintain a stable balance (and it has many ways of doing so) will we make the advancements necessary to develop diagnostic, preventive and therapeutic strategies to combat chronic kidney disease.«

Prof. Dr. Gert Mayer, Department of Internal Medicine IV, Nephrology and Hypertension, Medical University of Innsbruck, Austria

Media Contact: Barbara Ritzert · ProScience Communications GmbH · Andechser Weg 17 · 82343 Pöcking · Fon: ++49 (08)157 9397-0 · Fax: +49 (0)8157 9397-97 · ·

Barbara Ritzert | idw
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>