Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Washing Clothes

23.04.2002


The flow of soap solutions through fibres is of great importance for the final result of the washing process. This is one of the conclusions from the research project of Annemoon Timmerman. She will defend her thesis on Monday 22 April at TU Delft. With this conclusion she supports a theory that was disbelieved for years by experts in the field. Timmerman: “I have now experimentally proven why the laundry is actually clean after less than half an hour of washing. Up to now, that was a mystery.” The research was funded by TNO-Cleaning Technologies.



In the washing of clothes, four factors are important: chemistry (the soap), mechanical action (the stretching of the fibre by the washing machine), temperature and time. Timmerman: “Using these four factors, improvements have been made in the washing process in recent times. But despite the centuries of practical knowledge on the subject, it has actually always remained a mystery why it is that laundry is actually clean in a relatively short time.”

So how does the washing process work? Periodic mechanical forces are exerted on the fibres. This causes tiny flows in and out of the pores in the fibres. Timmerman: “For a long time it was thought that these flows of soap solution had nothing to do with the cleaning of the laundry. It was thought that diffusion allowed the soap to reach the dirt.” Diffusion is the process in which soap is drawn through the outer layer of the fibre, reaching the dirt. With the help of literature studies and experiments, the Delft researcher determined that there were definitely flows through the pores of fibres as well as diffusion. Timmerman: “There is a convection flow through the fibre with moving layers of soap molecules along the pore walls that loosen the dirt particles from within the fibre.” The clothing is cleaned from the inside out. This was never believed in the industry. “Convection along the pore wall? Impossible.” Timmerman’s findings also explain why the actual washing process only takes about ten minutes. “If it were to take place through only diffusion, it would take hours,” says Timmerman. “And we are all witnesses to the fact that that is not the case.”


Timmerman’s research has also shown that the four most important factors, especially chemistry and mechanical action are strongly linked. These two factors, together with the temperature, determine how effective the washing process is. Timmerman: “We are a little closer to solving the secrets of washing.”

Maarten van der Sanden | alphagalileo

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>