Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Washing Clothes

23.04.2002


The flow of soap solutions through fibres is of great importance for the final result of the washing process. This is one of the conclusions from the research project of Annemoon Timmerman. She will defend her thesis on Monday 22 April at TU Delft. With this conclusion she supports a theory that was disbelieved for years by experts in the field. Timmerman: “I have now experimentally proven why the laundry is actually clean after less than half an hour of washing. Up to now, that was a mystery.” The research was funded by TNO-Cleaning Technologies.



In the washing of clothes, four factors are important: chemistry (the soap), mechanical action (the stretching of the fibre by the washing machine), temperature and time. Timmerman: “Using these four factors, improvements have been made in the washing process in recent times. But despite the centuries of practical knowledge on the subject, it has actually always remained a mystery why it is that laundry is actually clean in a relatively short time.”

So how does the washing process work? Periodic mechanical forces are exerted on the fibres. This causes tiny flows in and out of the pores in the fibres. Timmerman: “For a long time it was thought that these flows of soap solution had nothing to do with the cleaning of the laundry. It was thought that diffusion allowed the soap to reach the dirt.” Diffusion is the process in which soap is drawn through the outer layer of the fibre, reaching the dirt. With the help of literature studies and experiments, the Delft researcher determined that there were definitely flows through the pores of fibres as well as diffusion. Timmerman: “There is a convection flow through the fibre with moving layers of soap molecules along the pore walls that loosen the dirt particles from within the fibre.” The clothing is cleaned from the inside out. This was never believed in the industry. “Convection along the pore wall? Impossible.” Timmerman’s findings also explain why the actual washing process only takes about ten minutes. “If it were to take place through only diffusion, it would take hours,” says Timmerman. “And we are all witnesses to the fact that that is not the case.”


Timmerman’s research has also shown that the four most important factors, especially chemistry and mechanical action are strongly linked. These two factors, together with the temperature, determine how effective the washing process is. Timmerman: “We are a little closer to solving the secrets of washing.”

Maarten van der Sanden | alphagalileo

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>