Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More to droplets than meets the eye. Salads, shampoos and mining to benefit from theoretical research into droplets

15.08.2006
How much effort does it take to understand the behaviour of oil droplets? A multi-disciplinary team of six researchers from the University of Melbourne has spent the best part of two years, and used AUS$300,000 of equipment to crack the problem.

But the result could be the improvement of the design and production of everyday products worth hundreds of millions of dollars.

They have developed a technique to measure the tiny forces between droplets in liquids. For the first time, the researchers can measure the attraction between oil droplets in water—and this has application for products ranging from milk and ice-cream to shampoos, drugs, and even mineral processing.

All these instances involve emulsions, the dispersion of droplets of oil through water.

“This was a truly multi-disciplinary effort,” says team member Dr Raymond Dagastine from the Particulate Fluids Processing Centre in the Department of Chemical and Biomolecular Engineering at the University of Melbourne.

“We had chemists, chemical engineers and mathematicians all working together because, not only did we have to figure out how to hold and push two tiny droplets together, and how to measure their interaction, but we also needed to interpret the information we collected.”

Raymond is one of sixteen early-career scientists selected from across Australia for the national competition Fresh Science. One of the Fresh Scientists will win a study tour to the UK where they will have the opportunity to present their work at the Royal Institution.

An experimental tool known as an Atomic Force Microscope was used to drive two oil droplets together in water very carefully at different speeds. The researchers developed a theoretical analysis to describe the collisions. In the end they were able to measure, understand and even predict how emulsion droplets interact with each other.

Emulsions are made of droplets of one liquid colliding with each other in another liquid.

Some droplets collide and bounce away, while others can collide and stick together or coalesce. It may seem simple, but the physics behind controlling whether the oil and water remain dispersed or how fast they separate is a key variable in the purification steps in pharmaceutical and minerals processing.

In addition, the separation that happens in salad dressing can be prevented from happening in products such as shampoo, milk and even ice cream. “It all could lead to improvements such as shampoos that clean better and mineral processing equipment that is smaller and more efficient,” Raymond says.

This work was recently published in Science the weekly journal of the American Association for the Advancement of Science.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2006/raymond.htm

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>