Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robo-rodent gets ’touchy-feely’

16.11.2005


Robots that ’feel’ objects and their texture could soon become a reality thanks to the innovative and interdisciplinary research of the AMouse, or artificial mouse, project.



But even more important, perhaps, are the lessons researchers learned about robot design and artificial intelligence. The project funded by the Future and Emerging Technologies initiative of the IST programme even developed new insights into biological brain function.

Researchers from Italy, Germany and Switzerland developed a ’feeling’ robot by developing a new sensor modelled on hypersensitive mouse whiskers. These AMouse researchers developed a large series of different sensors based on a wide variety of ’whisker’ types. These new sensors were then added to mainly standard Khepera research robots.


This not only gave the researchers insight into how mouse whiskers do their job, it also enabled them to develop prototypes that can be used to distinguish between different textures or an object.

The team demonstrated a real zest for innovation in their whisker design. One team from the University of Zurich used a variety of materials, from plastic to human hair. This was attached to the condenser plate of a microphone.

As the whisker encountered an object or surface, the whisker deformed the microphone diaphragm in a measurable way, allowing researchers to track characteristic signals from particular surfaces. The researchers then experimented with various whisker arrays and designs, to discover the optimal profile.

Even more exciting, however, were the results from ’multimodal’ sensor experiments. These use a combination of vision and touch through whisker and light or camera sensors. The mix of sensory inputs revealed how different data sources affect each other and how they combine to provide a clearer perception of any particular object. Some robots even manifested emergent behaviour.

Emergent behaviour is a primary characteristic of life. In biological systems the combination of various data, like touch and sight, reinforces specific neural pathways. These pathways come to dominate and can cause an entity to ’behave’ in a specific way.

In one startling outcome an AMouse robot demonstrated what appeared to be emergent behaviour: it developed a homing instinct without any pre-programming of any kind.

"Essentially we put in the sensors and then wire them up through the robots ’brain’, its CPU. We just switch it on without giving it instructions of any kind," says Simon Bovet, a Ph.D. student at the University of Zurich. When he threw the switch his robot started moving about the room but always returned to the spot where it began.

"I think emergent behaviour like this will be a major area in neuroscience and robotics research in the future," says Dr Andreas K. Engel, professor at the University Medical Centre Hamburg and coordinator of the AMouse project.

It will help develop robots that can evolve and it will also teach us much about human cognition. "We can study neural pathways and neural coding in a machine, in a way that’s currently impossible in humans. In a robot we can isolate a particular neural pathway to see what happens to other neurons when we trigger a specific one. In humans, if we stimulate one neuron it will influence changes a large number of other neurons, so it’s impossible to track what’s going on." Engel believes robotic models will offer many exciting insights into human cognition in the future.

Right now, he’s involved in another soon-to-begin IST project called POP, or Perception on Purpose, which will build on the neuroscience developed in AMouse to better understand how the human brain works.

Other partners will develop other aspects of this hugely multifaceted project, such as new robotic platforms and sensors.

"In terms of Neuroscience and Robotics, the US and Japan are the world leaders. But in terms of the combination of the two, Europe is leading, because they fall through a funding gap, just as this research does in Germany. EC funding closes that gap for Europe as a whole."

This is important, because Engel believes that the study and understanding of emergent behaviour will have an enormous influence in the future.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Interdisciplinary Research:

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

nachricht The Attraction Effect: how our Brains Can Be Influenced
30.01.2017 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>