Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£1.7m to build world’s first SIMS instrument combined with infra-red spectroscopy

28.09.2005


The University of Manchester has been awarded £1.7m to build a new instrument which will for the first time combine ToF-SIMS and infrared spectroscopy opening up new possibilities in the study biological, organic and inorganic materials.



The capabilities of the instrument, which is expected to be built within two years, will be tested on materials such as prostate cancer tissue and environmental particulate pollutants.

The new instrument will enable surface and bulk analysis to be carried out simultaneously by combining SIMS surface analysis with infrared spectroscopy.


The project, which will span a four year period, is funded by the Engineering and Physical Sciences Research Council (EPSRC) and will be carried out in collaboration with the University of Surrey and Penn State University, USA.

The Principal Investigator, Professor John Vickerman, Director of the Surface Analysis Research Centre, said: “This project is an exciting example of how high-level fundamental research will be exploited for the construction a novel instrument that can then be used for vital medical or environmental research. By combining this capability with infra-red spectroscopy we will be able to get a much fuller picture of the chemistry of the molecules and materials we are studying.”

ToF-SIMS and infra-red spectroscopy have already been used to probe prostate cancer tissue in a separate project within the University’s School of Chemical Engineering and Analytical Sciences. Co-investigators Dr Peter Gardner and Dr Nick Lockyer, in collaboration with scientists and clinicians at the CRUK Paterson Institute, have been applying IR spectroscopy and ToF-SIMS in the field of prostate cancer research for several years.

Peter Gardner, said: “IR spectroscopy has proved a highly successful tool for diagnosing and monitoring a range of diseases, including prostate cancer”. Nick Lockyer added; “The application of ToF-SIMS in cancer studies is extremely novel and this unique machine will allow us the new insights at the molecular level”

Environmental studies will also exploit the unique capabilities of the new instrument and will focus on investigating the surface chemistry of various types of particles found in the atmosphere, with specific interest in the uptake and transformation of small atmospheric molecules on solid particles. These fundamental processes undoubtedly affect the role of such particles in global climate change.

Co-investigator Dr Andrew Horn, said: “This is a considerable step forward in advanced, chemically resolved instrumentation. Over the past 10 years, we have demonstrated the complementarity of SIMS and IR spectroscopy through applications in a number of areas. The instrumentation and methods developed in this project will have significantly wider applications in physical and materials science in the longer term as well. This project is an excellent example of collaborative, multidisciplinary work between research groups within the University of Manchester.”

Professor Vickerman, added: “If we can produce a machine which can simultaneously analyse the same sample of materials using SIMS and infrared spectroscopy it will be a world first for Manchester.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>