Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


£1.7m to build world’s first SIMS instrument combined with infra-red spectroscopy


The University of Manchester has been awarded £1.7m to build a new instrument which will for the first time combine ToF-SIMS and infrared spectroscopy opening up new possibilities in the study biological, organic and inorganic materials.

The capabilities of the instrument, which is expected to be built within two years, will be tested on materials such as prostate cancer tissue and environmental particulate pollutants.

The new instrument will enable surface and bulk analysis to be carried out simultaneously by combining SIMS surface analysis with infrared spectroscopy.

The project, which will span a four year period, is funded by the Engineering and Physical Sciences Research Council (EPSRC) and will be carried out in collaboration with the University of Surrey and Penn State University, USA.

The Principal Investigator, Professor John Vickerman, Director of the Surface Analysis Research Centre, said: “This project is an exciting example of how high-level fundamental research will be exploited for the construction a novel instrument that can then be used for vital medical or environmental research. By combining this capability with infra-red spectroscopy we will be able to get a much fuller picture of the chemistry of the molecules and materials we are studying.”

ToF-SIMS and infra-red spectroscopy have already been used to probe prostate cancer tissue in a separate project within the University’s School of Chemical Engineering and Analytical Sciences. Co-investigators Dr Peter Gardner and Dr Nick Lockyer, in collaboration with scientists and clinicians at the CRUK Paterson Institute, have been applying IR spectroscopy and ToF-SIMS in the field of prostate cancer research for several years.

Peter Gardner, said: “IR spectroscopy has proved a highly successful tool for diagnosing and monitoring a range of diseases, including prostate cancer”. Nick Lockyer added; “The application of ToF-SIMS in cancer studies is extremely novel and this unique machine will allow us the new insights at the molecular level”

Environmental studies will also exploit the unique capabilities of the new instrument and will focus on investigating the surface chemistry of various types of particles found in the atmosphere, with specific interest in the uptake and transformation of small atmospheric molecules on solid particles. These fundamental processes undoubtedly affect the role of such particles in global climate change.

Co-investigator Dr Andrew Horn, said: “This is a considerable step forward in advanced, chemically resolved instrumentation. Over the past 10 years, we have demonstrated the complementarity of SIMS and IR spectroscopy through applications in a number of areas. The instrumentation and methods developed in this project will have significantly wider applications in physical and materials science in the longer term as well. This project is an excellent example of collaborative, multidisciplinary work between research groups within the University of Manchester.”

Professor Vickerman, added: “If we can produce a machine which can simultaneously analyse the same sample of materials using SIMS and infrared spectroscopy it will be a world first for Manchester.”

Simon Hunter | alfa
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>