Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University groundbreaking research on caterpillar locomotion

13.05.2004


Tufts University groundbreaking research on caterpillar locomotion could pave the way to designing first flexible robot to navigate through human body, pipelines, reactors



Tufts University neurobiologist Barry Trimmer is inching his way to unlocking the secrets behind the way caterpillars maneuver and climb, and is using that knowledge to one day build flexible robots that could explore internal organs, blood vessels and the insides of pipelines.

Trimmer recently received his third National Science Foundation grant, totaling nearly $1 million to date, to support this research.


An associate professor of biology in the School of Arts and Sciences at Tufts with expertise in cellular biology and neurophysiology, Trimmer has appointments in biomedical engineering at Tufts’ School of Engineering and in neurosciences at Tufts’ Sackler School of Graduate Biomedical Sciences.

"We are trying to understand how the nervous system controls these complex movements so we can replicate that movement and build our own soft-bodied robots that maneuver easily, like a caterpillar," Trimmer said.

He added, "Our research has potential applications in the design and control of a new type of flexible robot that could be used to navigate through pipelines or intricate structures such as blood vessels and air tubes, as well as space shuttle operations and building construction."

Trimmer’s lab is believed to be the only one of its kind to focus on the locomotion of soft-bodied insects, specifically the nervous system and how it works with the biomechanics of the caterpillar. (There are many biologists and engineers that study animals with skeletons and joints with a goal of building jointed, but not flexible robots.)

Two specific aspects of the caterpillar’s movement are being examined in detail: first, the research is trying to understand how crawling is controlled by the central nervous system and how it interacts with peripheral structures such as muscles and cuticles. Second, the unique ability of caterpillars to climb using curved hooks at the tips of the abdominal prolegs is being examined. This gripping is passive but very strong (similar to Velcro hooks) and can be actively released.

To examine these questions, Trimmer and his research team are using 3D kinematics, electromyography, hydraulic measurements, magnetic resonance imaging, 3D modeling and animation and biomaterials testing.

Caterpillars provide a useful survival model: They do not escape predators by running but instead use camouflage, chemical defenses and cryptic behavior. As a result, their movement – crawling – has evolved into a highly specialized form of locomotion which allows soft-bodied animals to crumple, compress and rotate body parts into confined three-dimensional structures such as tubes and branches.

Trimmer is working with Tufts colleagues across the University in physics, mathematics and mechanical engineering, and often employs undergraduate researchers as well. The majority of the knowledge about how humans move is based on research about creatures that walk, fly or swim using hard bones and exoskeletons (a hard outer structure that provides protection or support). By looking at soft bodied animals like the caterpillar, Trimmer can copy some of the unique ways in which they move.

This summer, the team will begin to design a physics-based computerized simulation model of the locomotion, and it hopes to have an operating prototype ready next year.

"We need to solve the artificial muscle problem first, currently there are no good soft actuators (motors) available," according to Trimmer.

"Professor Trimmer is a trailblazer in the field of biosystems and neural processes," said Susan Ernst, a biologist and dean of the School of Arts & Sciences. "His work could help scientists and engineers around the world navigate complex and even dangerous situations."

Trimmer – who is from Leicestershire County, England, and has been at Tufts since 1990 – has presented his work on the neural control of soft-bodied locomotion at several meetings over the past two years, including the British Biochemical Society, the East Coast Nerve Net meeting, the Society for Neuroscience Annual Meeting, and the Society for Integrative and Comparative Biology’s annual meeting.

For more information on Trimmer and other neural processes work being done in his lab, see: http://ase.tufts.edu/biology/faculty/trimmer/.


Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.

Kerry Murphy | EurekAlert!
Further information:
http://www.tufts.edu/
http://ase.tufts.edu/biology/faculty/trimmer/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>