Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University groundbreaking research on caterpillar locomotion

13.05.2004


Tufts University groundbreaking research on caterpillar locomotion could pave the way to designing first flexible robot to navigate through human body, pipelines, reactors



Tufts University neurobiologist Barry Trimmer is inching his way to unlocking the secrets behind the way caterpillars maneuver and climb, and is using that knowledge to one day build flexible robots that could explore internal organs, blood vessels and the insides of pipelines.

Trimmer recently received his third National Science Foundation grant, totaling nearly $1 million to date, to support this research.


An associate professor of biology in the School of Arts and Sciences at Tufts with expertise in cellular biology and neurophysiology, Trimmer has appointments in biomedical engineering at Tufts’ School of Engineering and in neurosciences at Tufts’ Sackler School of Graduate Biomedical Sciences.

"We are trying to understand how the nervous system controls these complex movements so we can replicate that movement and build our own soft-bodied robots that maneuver easily, like a caterpillar," Trimmer said.

He added, "Our research has potential applications in the design and control of a new type of flexible robot that could be used to navigate through pipelines or intricate structures such as blood vessels and air tubes, as well as space shuttle operations and building construction."

Trimmer’s lab is believed to be the only one of its kind to focus on the locomotion of soft-bodied insects, specifically the nervous system and how it works with the biomechanics of the caterpillar. (There are many biologists and engineers that study animals with skeletons and joints with a goal of building jointed, but not flexible robots.)

Two specific aspects of the caterpillar’s movement are being examined in detail: first, the research is trying to understand how crawling is controlled by the central nervous system and how it interacts with peripheral structures such as muscles and cuticles. Second, the unique ability of caterpillars to climb using curved hooks at the tips of the abdominal prolegs is being examined. This gripping is passive but very strong (similar to Velcro hooks) and can be actively released.

To examine these questions, Trimmer and his research team are using 3D kinematics, electromyography, hydraulic measurements, magnetic resonance imaging, 3D modeling and animation and biomaterials testing.

Caterpillars provide a useful survival model: They do not escape predators by running but instead use camouflage, chemical defenses and cryptic behavior. As a result, their movement – crawling – has evolved into a highly specialized form of locomotion which allows soft-bodied animals to crumple, compress and rotate body parts into confined three-dimensional structures such as tubes and branches.

Trimmer is working with Tufts colleagues across the University in physics, mathematics and mechanical engineering, and often employs undergraduate researchers as well. The majority of the knowledge about how humans move is based on research about creatures that walk, fly or swim using hard bones and exoskeletons (a hard outer structure that provides protection or support). By looking at soft bodied animals like the caterpillar, Trimmer can copy some of the unique ways in which they move.

This summer, the team will begin to design a physics-based computerized simulation model of the locomotion, and it hopes to have an operating prototype ready next year.

"We need to solve the artificial muscle problem first, currently there are no good soft actuators (motors) available," according to Trimmer.

"Professor Trimmer is a trailblazer in the field of biosystems and neural processes," said Susan Ernst, a biologist and dean of the School of Arts & Sciences. "His work could help scientists and engineers around the world navigate complex and even dangerous situations."

Trimmer – who is from Leicestershire County, England, and has been at Tufts since 1990 – has presented his work on the neural control of soft-bodied locomotion at several meetings over the past two years, including the British Biochemical Society, the East Coast Nerve Net meeting, the Society for Neuroscience Annual Meeting, and the Society for Integrative and Comparative Biology’s annual meeting.

For more information on Trimmer and other neural processes work being done in his lab, see: http://ase.tufts.edu/biology/faculty/trimmer/.


Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.

Kerry Murphy | EurekAlert!
Further information:
http://www.tufts.edu/
http://ase.tufts.edu/biology/faculty/trimmer/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>