Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cambridge-MIT Institute launches an initiative to accelerate next-generation drug discovery

25.03.2004


The Cambridge-MIT Institute (CMI) is today launching a new initiative to unite biologists and medical researchers with physicists, engineers, computer scientists and mathematicians to work on an innovative approach to discovering the next generation of drugs.

CMI is funding a transatlantic Next-Generation Drug Discovery Community that will bring together researchers at Cambridge University and the Massachusetts Institute of Technology (MIT) with partners from the IT, pharmaceutical and biotechnology industries. They will be working on new methods of tackling the urgent and severe bottlenecks in the discovery and development of new drugs - particularly drugs for diseases with complex causes such as cancers, arthritis, multiple sclerosis, and diabetes.

Drug discovery is currently an extremely lengthy and costly process. On average, it takes new treatments $800m and twelve years to reach the market - and those are just the ones that succeed. But the sequencing of the human genome has made available a vast array of information about the many, very complex ways in which the human body works.



Since then, says Professor Doug Lauffenburger from MIT, one of the leaders of the Next-Generation Drug Discovery Community, “Everyone has thought that now, surely, we should be able to find those genes that cause disease, and which ones to correct. But actually, it is far harder than this because organisms are very complex, and there can be multiple reactions and causes involved in a disease”.

CMI is therefore setting up this Community to move away from the ‘one gene, one protein, one drug’ approach of old and instead adopt a multi-disciplinary new approach to drugs discovery: the Systems Biology approach. The Community is working towards developing the sophisticated skills and technologies needed in order to be able to:
  • conduct rapid, quantitative experimental measurement of many gene- and protein-level properties of cells and tissues simultaneously (vital to understanding diseases that have multiple factors and causes), and

  • offer the computer-aided analysis of the meaning of these data for disease mechanisms, and treatment. The resulting computational models will not only be vital to speed up drug discovery research, but will also allow us to predict which drugs will be most efficient, and at what dose and time point to treat individual patients, thereby contributing to the development of “personalised medicine”.

“Our aims are to develop safer and more effective new drugs, faster and cheaper,” says Professor Lauffenburger from MIT. “Another aim of this Community is reduce the current reliance on animal experiments to predict effects on humans.”

As part of its work, the Community is conducting two research projects. One is studying adult, blood stem cells with the aim of using them to establish new experimental systems to test the efficacy and toxicity of drugs on human physiology. The other project aims to establish new, computational methods by which drug targets can be identified from human gene- and protein-level data.

“There are major computational challenges involved,” says Dr Gos Micklem, who is part of the Cambridge team, “if we are going to make sense of all the data, and use it to start building systems-level views of life and disease processes. As we start to do this, and take into account the genetic variation between individuals, this opens up new possibilities in evaluating disease susceptibility, improved diagnosis and the ability to offer therapy tailored to each individual patient.”

The Next-Generation Drug Discovery Community is one of several new Knowledge Integration Communities (KICs) that the Cambridge-MIT Institute is setting up. These KICs aim to find new ways in which academia and industry can work together and exchange knowledge to push forward research in areas where UK industry has a demonstrable competitive position – like biotechnology and information technology . So alongside the research work, there are other strands to the Community. New educational programmes are being created. These include a new Masters degree programme at the University of Cambridge, an MPhil in Computational Biology, to teach biology to mathematicians and others, and make biologists more familiar with computer science.

Meanwhile, industry is also being informed about this work, and encouraged to join the Community.

Dr Adriano Henney, Director in Global Sciences & Information at AstraZeneca, says, “AstraZeneca, through its collaboration with MIT, already recognises the potential value of systems biology and mathematical modelling. During this collaboration, the joint project teams have prototyped the use of these approaches in drug discovery and this has helped to influence investment in the creation of a new, multidisciplinary capability in this area within the Company. We are looking forward to continuing our close collaboration with Professor Lauffenburger, and to the possibility of extending this to include Cambridge in the near future.”

Lize King | alfa
Further information:
http://www.cambridge-mit.org

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>