Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From genome comparisons, UCSD researchers learn lessons about evolution and cancer

13.10.2003


CSE professor Pavel Pevzner (left) and Mathematics assistant professor Glenn Tesler


In 1905, American astronomer Percival Lowell predicted the existence of a new planet he called Planet X. Lowell proved that this new planet existed even though no one had been able to see it in the sky. Twenty-five years later, astronomer Clyde Tombaugh stumbled on images of X photographed from the Flagstaff Observatory in Arizona. Today, that planet is known as Pluto.

While it took twenty-five years for astronomers to go from theory to confirmation of Pluto’s existence, it took genome scientists barely three months in 2003 to confirm a revolutionary new view of what happens in the human genome to cause dramatic evolutionary changes. Now, bioinformaticians at the University of California, San Diego (UCSD) -- who posited that ’fragile’ regions exist in the human genome that are more susceptible to gene rearrangements -- are collaborating with biologists to see if their new theory can yield potentially life-saving insights into diseases such as breast cancer, in which chromosomal rearrangements are implicated.

"It took only three months to go from theory to hard scientific evidence that there are regions of the genome that are subject to evolutionary ’earthquakes’ over and over again," says Pavel Pevzner, who holds the Ronald R. Taylor Chair in computer science and engineering at UCSD’s Jacobs School of Engineering. "That is representative of how quickly knowledge is advancing in bioinformatics, and how useful this research can be for medicine and other fields."



In June, Pevzner and UCSD mathematics professor Glenn Tesler predicted the existence of evolutionary ’fault zones’ -- hotspots where gene rearrangements are more likely to occur and change the architecture of our genomes. Their work was based on computational analysis and comparison of the human and mouse genomes. In a paper in the journal Proceedings of the National Academy of Sciences (PNAS), Pevzner and Tesler estimated that these fault zones may be limited to approximately 400 fragile regions that account for only 5 percent of the human genome. While reaching that estimate using computers, the researchers were not yet able to point to specific locations in the genome where these rearrangements are more commonplace.


The PNAS paper departed from the prevailing ’random breakage’ theory of evolution that has been widely held for nearly two decades, but the theory of ’fragile breakage’ quickly gained acceptance. A team led by UC Santa Cruz scientists Jim Kent and David Haussler, who are widely credited for their work in the public-sector assembly of the human genome, were the first to confirm the UCSD results. In addition, for the first time, they explicitly pinpointed the location of some of the faults in the human genome.

Kent’s findings were published in the September 30 edition of PNAS, along with a commentary by two pioneers in computational biology: University of Ottawa mathematician David Sankoff, and Case Western Reserve University genetics professor Joseph Nadeau. The commentary supports the original conclusions of Pevzner and Tesler. That support is all the more notable, because Nadeau is the scientist who, in 1984, originated the random breakage theory that Pevzner and Tesler rebutted. In their article, he and Sankoff acknowledge that the random breakage theory needs to be revised along the lines spelled out by Pevzner and Tesler.

Using similar computational tools, Pevzner and his post-doctoral researcher, Ben Raphael, are working with biologists at the University of California, San Francisco (UCSF) Cancer Center to analyze chromosomal rearrangements in tumors. Their October paper in the journal Bioinformatics includes an analysis that yields the first high-resolution (albeit incomplete) picture of the genomic architecture of a complex breast cancer genome.

Human cancer cells frequently possess chromosomal aberrations (such as missing an arm of a chromosome), or rearrangements, leading to changes in genomic architecture. The breast cancer MCF7 cell line is an extreme example of such aberrations, where everything went wrong and all human chromosomes but one got rearranged, fused together, or broken, as if a tall building collapsed after an earthquake. Using the recently developed End Sequence Profiling (ESP) technique developed at UCSF Cancer Center that is cheaper and quicker than outright genome sequencing, Pevzner and colleagues analyzed human MCF7 tumor cells and derived 22 genomic rearrangements implicated in cancer, most of them previously unknown. Many of them have already been experimentally confirmed at UCSF. The UCSF team has extended this work to brain, ovarian, and prostate cancer cells, generating a ten-fold increase in the ESP data that Pevzner and Raphael are now analyzing.

"When the letters of our genomic alphabet get scrambled in a single lifetime, it can be life-threatening," says Pevzner. "But we suspect that by understanding how genomic rearrangements play out over millions of years of human evolution, we may find a correlation between these phenomena -- and possibly provide biologists with new tools to study such conditions as breast cancer at the genetic level."

As soon as reconstructions of other tumor genomes are completed, Pevzner and his colleagues will investigate whether the breakpoints implicated in cancers are correlated with the breakpoints evident in human-mouse evolution from their common ancestor 75 million years ago. And as other mammalian genomes are sequenced, Pevzner and Tesler expect to use advanced computational tools to derive further insights into human evolution and cancer.

Doug Ramsey | UCSD
Further information:
http://www.jacobsschool.ucsd.edu/news_events/news_2003/20031010.shtml

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>