Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From genome comparisons, UCSD researchers learn lessons about evolution and cancer

13.10.2003


CSE professor Pavel Pevzner (left) and Mathematics assistant professor Glenn Tesler


In 1905, American astronomer Percival Lowell predicted the existence of a new planet he called Planet X. Lowell proved that this new planet existed even though no one had been able to see it in the sky. Twenty-five years later, astronomer Clyde Tombaugh stumbled on images of X photographed from the Flagstaff Observatory in Arizona. Today, that planet is known as Pluto.

While it took twenty-five years for astronomers to go from theory to confirmation of Pluto’s existence, it took genome scientists barely three months in 2003 to confirm a revolutionary new view of what happens in the human genome to cause dramatic evolutionary changes. Now, bioinformaticians at the University of California, San Diego (UCSD) -- who posited that ’fragile’ regions exist in the human genome that are more susceptible to gene rearrangements -- are collaborating with biologists to see if their new theory can yield potentially life-saving insights into diseases such as breast cancer, in which chromosomal rearrangements are implicated.

"It took only three months to go from theory to hard scientific evidence that there are regions of the genome that are subject to evolutionary ’earthquakes’ over and over again," says Pavel Pevzner, who holds the Ronald R. Taylor Chair in computer science and engineering at UCSD’s Jacobs School of Engineering. "That is representative of how quickly knowledge is advancing in bioinformatics, and how useful this research can be for medicine and other fields."



In June, Pevzner and UCSD mathematics professor Glenn Tesler predicted the existence of evolutionary ’fault zones’ -- hotspots where gene rearrangements are more likely to occur and change the architecture of our genomes. Their work was based on computational analysis and comparison of the human and mouse genomes. In a paper in the journal Proceedings of the National Academy of Sciences (PNAS), Pevzner and Tesler estimated that these fault zones may be limited to approximately 400 fragile regions that account for only 5 percent of the human genome. While reaching that estimate using computers, the researchers were not yet able to point to specific locations in the genome where these rearrangements are more commonplace.


The PNAS paper departed from the prevailing ’random breakage’ theory of evolution that has been widely held for nearly two decades, but the theory of ’fragile breakage’ quickly gained acceptance. A team led by UC Santa Cruz scientists Jim Kent and David Haussler, who are widely credited for their work in the public-sector assembly of the human genome, were the first to confirm the UCSD results. In addition, for the first time, they explicitly pinpointed the location of some of the faults in the human genome.

Kent’s findings were published in the September 30 edition of PNAS, along with a commentary by two pioneers in computational biology: University of Ottawa mathematician David Sankoff, and Case Western Reserve University genetics professor Joseph Nadeau. The commentary supports the original conclusions of Pevzner and Tesler. That support is all the more notable, because Nadeau is the scientist who, in 1984, originated the random breakage theory that Pevzner and Tesler rebutted. In their article, he and Sankoff acknowledge that the random breakage theory needs to be revised along the lines spelled out by Pevzner and Tesler.

Using similar computational tools, Pevzner and his post-doctoral researcher, Ben Raphael, are working with biologists at the University of California, San Francisco (UCSF) Cancer Center to analyze chromosomal rearrangements in tumors. Their October paper in the journal Bioinformatics includes an analysis that yields the first high-resolution (albeit incomplete) picture of the genomic architecture of a complex breast cancer genome.

Human cancer cells frequently possess chromosomal aberrations (such as missing an arm of a chromosome), or rearrangements, leading to changes in genomic architecture. The breast cancer MCF7 cell line is an extreme example of such aberrations, where everything went wrong and all human chromosomes but one got rearranged, fused together, or broken, as if a tall building collapsed after an earthquake. Using the recently developed End Sequence Profiling (ESP) technique developed at UCSF Cancer Center that is cheaper and quicker than outright genome sequencing, Pevzner and colleagues analyzed human MCF7 tumor cells and derived 22 genomic rearrangements implicated in cancer, most of them previously unknown. Many of them have already been experimentally confirmed at UCSF. The UCSF team has extended this work to brain, ovarian, and prostate cancer cells, generating a ten-fold increase in the ESP data that Pevzner and Raphael are now analyzing.

"When the letters of our genomic alphabet get scrambled in a single lifetime, it can be life-threatening," says Pevzner. "But we suspect that by understanding how genomic rearrangements play out over millions of years of human evolution, we may find a correlation between these phenomena -- and possibly provide biologists with new tools to study such conditions as breast cancer at the genetic level."

As soon as reconstructions of other tumor genomes are completed, Pevzner and his colleagues will investigate whether the breakpoints implicated in cancers are correlated with the breakpoints evident in human-mouse evolution from their common ancestor 75 million years ago. And as other mammalian genomes are sequenced, Pevzner and Tesler expect to use advanced computational tools to derive further insights into human evolution and cancer.

Doug Ramsey | UCSD
Further information:
http://www.jacobsschool.ucsd.edu/news_events/news_2003/20031010.shtml

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>