Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Life Experiments Show How Complex Functions Can Evolve

08.05.2003


If the evolution of complex organisms were a road trip, then the simple country drives are what get you there. And sometimes even potholes along the way are important.



An interdisciplinary team of scientists at Michigan State University and the California Institute of Technology, with the help of powerful computers, has used a kind of artificial life, or ALife, to create a road map detailing the evolution of complex organisms, an old problem in biology.

In an article in the May 8 issue of the international journal Nature, Richard Lenski, Charles Ofria, Robert Pennock, and Christoph Adami report that the path to complex organisms is paved with a long series of simple functions, each unremarkable if viewed in isolation. "This project addresses a fundamental criticism of the theory of evolution, how complex functions arise from mutation and natural selection," said Sam Scheiner, program director in the division of environmental biology at the National Science Foundation (NSF), which funded the research through its Biocomplexity in the Environment initiative. "These simulations will help direct research on living systems and will provide understanding of the origins of biocomplexity."


Some mutations that cause damage in the short term ultimately become a positive force in the genetic pedigree of a complex organism. "The little things, they definitely count," said Lenski of Michigan State, the paper’s lead author. "Our work allowed us to see how the most complex functions are built up from simpler and simpler functions. We also saw that some mutations looked like bad events when they happened, but turned out to be really important for the evolution of the population over a long period of time."

In the key phrase, "a long period of time," lies the magic of ALife. Lenski teamed up with Adami, a scientist at Caltech’s Jet Propulsion Laboratory and Ofria, a Michigan State computer scientist, to further explore ALife.

Pennock, a Michigan State philosopher, joined the team to study an artificial world inside a computer, a world in which computer programs take the place of living organisms. These computer programs go forth and multiply, they mutate and they adapt by natural selection.

The program, called Avida, is an artificial petri dish in which organisms not only reproduce, but also perform mathematical calculations to obtain rewards. Their reward is more computer time that they can use for making copies of themselves. Avida randomly adds mutations to the copies, thus spurring natural selection and evolution. The research team watched how these "bugs" adapted and evolved in different environments inside their artificial world.

Avida is the biologist’s race car - a really souped up one. To watch the evolution of most living organisms would require thousands of years – without blinking. The digital bugs evolve at lightening speed, and they leave tracks for scientists to study.

"The cool thing is that we can trace the line of descent," Lenski said. "Out of a big population of organisms you can work back to see the pivotal mutations that really mattered during the evolutionary history of the population. The human mind can’t sort through so much data, but we developed a tool to find these pivotal events."

There are no missing links with this technology.

Evolutionary theory sometimes struggles to explain the most complex features of organisms. Lenski uses the human eye as an example. It’s obviously used for seeing, and it has all sorts of parts - like a lens that can be focused at different distances - that make it well suited for that use. But how did something so complicated as the eye come to be?

Since Charles Darwin, biologists have concluded that such features must have arisen through lots of intermediates and, moreover, that these intermediate structures may once have served different functions from what we see today. The crystalline proteins that make up the lens of the eye, for example, are related to those that serve enzymatic functions unrelated to vision. So, the theory goes, evolution borrowed an existing protein and used it for a new function.

"Over time," Lenski said, "an old structure could be tweaked here and there to improve it for its new function, and that’s a lot easier than inventing something entirely new."

That’s where ALife sheds light.

"Darwinian evolution is a process that doesn’t specify exactly how the evolving information is coded," says Adami, who leads the Digital Life Laboratory at Caltech. "It affects DNA and computer code in much the same way, which allows us to study evolution in this electronic medium."

Many computer scientists and engineers are now using processes based on principles of genetics and evolution to solve complex problems, design working robots, and more. Ofria says that "we can then apply these concepts when trying to decide how best to solve computational problems."

"Evolutionary design," says Pennock, "can often solve problems better than we can using our own intelligence."

-NSF-

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/pr0351.htm
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>