Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to make the smallest, most perfect, densest nanowire lattices—and it’s a SNAP


Researchers participating in the California NanoSystems Institute (CNSI) at the University of California at Santa Barbara (UCSB) and at Los Angeles (UCLA) have invented a new technique for producing "Ultra High Density Nanowire Lattices and Circuits"--the title of their paper being published expeditiously at 2:00 p.m. March 13 on the "Science Express" website, Science Magazine’s rapid portal for publication of significant research findings to appear subsequently in print in Science.

The method, for which a patent is pending, is akin to intaglio printmaking processes in which printing is done from ink below the surface of the plate. Intaglio processes emboss paper into the plate’s incised lines.

The CNSI nanowires are like the embossed ink on a paper substrate, except that the nanowires are much, much smaller than ink lines. Take, for instance, a grid of crossed nanowires. Each cross represents the element of a simple circuit! The nanowire junction density reported in the "Science Express" article is in excess of 1011 per square centimeter.

The process is, moreover, so straightforward that the authors nicknamed it "SNAP," for Superlattice NAnowire Pattern transfer.

Two and a half years ago, principal investigators into nanoscale phenomena at UCSB and UCLA joined together to form the California NanoSystems Institute. The genesis of the research being reported via the "Science Express" website dates to a meeting between the two university groups in the early days of the Institute when the researchers first got together to describe to each other problems they faced.

At that meeting James Heath, then a chemistry professor at UCLA and now at the California Institute of Technology, explained one big stumbling block to the making of molecular computers. He said that contacts to single molecules had to be established through a massive crosswire array.

To put the problem in its simplest form, attaching a nanowire to each end of a single molecule offers the possibility of creating a molecular switch. Heath and his colleagues have shown that passing a current through this simple circuit changes the molecule configuration and creates a molecular switch with a transistor-like action. What Heath wanted was a crosswire array for establishing electrical contacts to a large ensemble of single molecules.

UCSB Materials Professor Pierre Petroff immediately responded to Heath’s challenge by sketching out on the blackboard the rudiments of the idea for constructing the high density nanowire lattice that is reported in the "Science Express" paper, authored by Heath and Petroff and their postdoc and students.

The first step is construction of the stamp or (to recur to the intaglio analogy) the incised plate. The second step is use of the stamp to make the wires.

Key to the process is the MBE (Molecular Beam Epitaxy) approach to making compound semiconductors by laying down one layer of one type of material and then another of another type of related material--alternating materials layer by layer as if stacking alternating pieces of cardboard and paper. The materials used are standard compound semiconductors gallium arsenide and aluminum gallium arsenide.

Then one takes a piece of the compound semiconductor (say, a two-inch square) and turns it on its side where the pattern of alternation in the materials appears. Next one selectively etches out to a certain depth one of the two materials so that the surface resembles a saw-tooth. That saw-tooth or corrugated surface is the stamp on which the nanowires are formed by plasma deposition of a material--almost any material, metal or semiconductor.

Petroff recalls that he was initially attracted to the idea because the process would be cheap, "a millimeter size stamp without any lithography," as he puts it. "The process allows us to make metal lines," he said, "which are highly perfect. The SNAP process has demonstrated the smallest metal lines with the closest spacing that have ever been made. That is an achievement in itself!

"Through deposition, the channels turn into wires that can be made out of almost any material. After deposition of a metal layer, it can be transferred onto a substrate via epoxy bonding, wafer fusion or other process."

The researchers have measured conductivity over the wires up to 10s of microns in length. (Though the wires extend without touching and without interruption for 100s of microns, they have only tested conductivity over 10s of microns). The researchers have also measured resistance between wires and shown that the wires do not short out.

Repeating the process at right angle to the original impress produces a grid work of crossed wires--and therefore circuits. Petroff figured out how to remove the stamp from the metal wires by etching out an oxide, thereby enabling reuse of the stamp.

"Now, said Petroff, "the question is how do we affix a contact to one wire without touching another. That’s the real challenge. There are ways of doing that." He describes one approach using a focus ion beam to deactivate selected wires, which is a little like cutting one strand of hair in a bundle.

In addition to molecular switches, other obvious applications for the nanowire lattice include nano-sensors and bio-sensors. Petroff’s research group is also employing the technique to order nano-particles in an effort to make very high-density magnetic storage devices.

Finally, Petroff points out, the nanowire construction technique will enable investigations into the basic physical properties of matter whose surface energy exceeds interior bulk energy. The construction technique, he emphasizes, is superb for such studies because the nanowires can be made out of such a wide variety of materials.

The paper’s first author is Heath’s postdoc Nicholas Melosh (who received his Ph.D. in materials from UCSB). Melosh said, "The significance of the SNAP technique is that the wires created are near the same length-scales as the fundamental building blocks of matter--molecules and atoms. Potentially, these wires could interface with a single molecule."

Heath’s graduate student Akram Boukai is also an author. The other authors are Petroff’s graduate students: Frederic Diana, Brian Geradot, and Antonio Badolato. A note at the end of the paper thanks Caltech Physics Professor Michael Roukes for teaching the CNSI researchers "how to perform high frequency nanomechanical resonator measurements."

Jacquelyn Savani | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>