Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mathematics of a clean swimming pool

31.07.2002


Without adequate cleaning regimes swimming pools can become a health hazard.


Now water experts and mathematicians are ‘pooling’ their expertise to anticipate the factors that lead to an unhealthy swimming environment.

The researchers are testing different water treatments using a unique pilot pool, donated by an advisory body, that simulates the chemical environment of a municipal swimming pool. Significantly this research technique could also be applied to other water recycling systems, such as those used in industry.

The research is being coordinated by Dr Simon Judd at the School of Water Sciences at the Cranfield University campus in Bedfordshire with funding from the Swindon based Engineering and Physical Sciences Research Council.



Mathematicians will then use the information gathered from the pool experiments to develop models to predict the production of unwanted by-products that lead to unhealthy conditions. The information can include details of the number of bathers in a given sized pool, the concentration of organic compounds, the pH of the water and the concentration of disinfectant. This work is being carried out by the Department of Engineering Mathematics at the University of Bristol.

“Ultimately the idea would be to develop an accurate model to represent the chemical processes that are occurring in the pool,” says Dr Judd. “This would provide a flexible tool to look at the effect of various regimes to manage the water quality and enable us to identify the optimal conditions for operating the system. For example what would be the effect of reducing the organic loading by insisting that bathers wash themselves before swimming, or would intermittent dosing of disinfectant prove sufficient?”

The work has implications beyond the management of swimming pools. “The same basic parameters apply to other water treatment systems, such as industrial water recycling,” says Dr Judd. “The same issues of pollutant loading, treatment dosages, the formation of by-products are all relevant.”

Jane Reck | alfa

More articles from Interdisciplinary Research:

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>