Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mathematics of a clean swimming pool

31.07.2002


Without adequate cleaning regimes swimming pools can become a health hazard.


Now water experts and mathematicians are ‘pooling’ their expertise to anticipate the factors that lead to an unhealthy swimming environment.

The researchers are testing different water treatments using a unique pilot pool, donated by an advisory body, that simulates the chemical environment of a municipal swimming pool. Significantly this research technique could also be applied to other water recycling systems, such as those used in industry.

The research is being coordinated by Dr Simon Judd at the School of Water Sciences at the Cranfield University campus in Bedfordshire with funding from the Swindon based Engineering and Physical Sciences Research Council.



Mathematicians will then use the information gathered from the pool experiments to develop models to predict the production of unwanted by-products that lead to unhealthy conditions. The information can include details of the number of bathers in a given sized pool, the concentration of organic compounds, the pH of the water and the concentration of disinfectant. This work is being carried out by the Department of Engineering Mathematics at the University of Bristol.

“Ultimately the idea would be to develop an accurate model to represent the chemical processes that are occurring in the pool,” says Dr Judd. “This would provide a flexible tool to look at the effect of various regimes to manage the water quality and enable us to identify the optimal conditions for operating the system. For example what would be the effect of reducing the organic loading by insisting that bathers wash themselves before swimming, or would intermittent dosing of disinfectant prove sufficient?”

The work has implications beyond the management of swimming pools. “The same basic parameters apply to other water treatment systems, such as industrial water recycling,” says Dr Judd. “The same issues of pollutant loading, treatment dosages, the formation of by-products are all relevant.”

Jane Reck | alfa

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>