Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universiteit of Groningen launches research centre for synthetic biology

14.03.2008
The University of Groningen now has a Centre for Synthetic Biology (CSB). Synthetic biology is a new phase in biotechnology in which biologists, bioinformaticians, chemists, physicists and engineers work together to construct the elements of a biological cell using chemical and biochemical building blocks. Over the next five years, the University of Groningen will invest EUR 2 million per year in the new research centre.

Key participants in the Groningen initiative are the biochemist Prof. Bert Poolman (director of the new centre), molecular biologist Prof. Roel Bovenberg (also research leader at DSM in Delft), microbiologist Prof. Lubbert Dijkhuizen (director of the Groningen Biomolecular Sciences and Biotechnology Institute), organic chemist Prof. Ben Feringa (Jacobus van ’t Hoff Professor of Molecular Sciences), physicist Prof. Jasper Knoester (director of the Zernike Institute for Advanced Materials) and molecular microbiologist Prof. Arnold Driessen. The key research areas of the CSB are as follows:

- cell factories for producing pharmaceuticals (including antibiotics) and important biological proteins

- systems for controlled drug delivery and new diagnostics

- materials (e.g. biosensors and biochips) based on biological components.

BioBricks

Until recently, biologists, chemists and biochemists were involved in studying complex biological systems. Synthetic biology takes things a step further: cells and cell components are built to a design produced by humans in order to produce specific products or devices. The starting point is not a cell (or cell component) that has evolved, but a synthetic cell (cell component) specifically designed to perform a non-natural function. Among other things, synthesized DNA is used, and natural as well as non-natural building blocks. As in architecture and electrical engineering, cell components (‘BioBricks’) and the production process will be standardized. In the future it may well be possible to build a complete synthetic cell.

Potential

Synthetic biology is seen as the ‘third technological revolution’, following on from the chip, the foundation of modern electronics, and biotechnology made possible with the discovery of the structure of DNA. Synthetic biology combines these two earlier developments, thus opening up new and promising possibilities. The University of Groningen therefore believes that it is of great strategic importance to invest in fundamental research that will advance this groundbreaking technology.

Support

The new centre, with four new Synthetic Biology sections, is not alone in this task, but will be supported by the Zernike Institute for Advanced Materials, the Stratingh Institute for Chemistry, and the Groningen Biomolecular Sciences and Biotechnology Institute (GBB). In the years to come, the CSB will launch an intensive recruitment campaign to attract top researchers and further steps will be taken to establish cooperative partnerships with knowledge centres and businesses in the Netherlands and abroad.

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>