Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universiteit of Groningen launches research centre for synthetic biology

14.03.2008
The University of Groningen now has a Centre for Synthetic Biology (CSB). Synthetic biology is a new phase in biotechnology in which biologists, bioinformaticians, chemists, physicists and engineers work together to construct the elements of a biological cell using chemical and biochemical building blocks. Over the next five years, the University of Groningen will invest EUR 2 million per year in the new research centre.

Key participants in the Groningen initiative are the biochemist Prof. Bert Poolman (director of the new centre), molecular biologist Prof. Roel Bovenberg (also research leader at DSM in Delft), microbiologist Prof. Lubbert Dijkhuizen (director of the Groningen Biomolecular Sciences and Biotechnology Institute), organic chemist Prof. Ben Feringa (Jacobus van ’t Hoff Professor of Molecular Sciences), physicist Prof. Jasper Knoester (director of the Zernike Institute for Advanced Materials) and molecular microbiologist Prof. Arnold Driessen. The key research areas of the CSB are as follows:

- cell factories for producing pharmaceuticals (including antibiotics) and important biological proteins

- systems for controlled drug delivery and new diagnostics

- materials (e.g. biosensors and biochips) based on biological components.

BioBricks

Until recently, biologists, chemists and biochemists were involved in studying complex biological systems. Synthetic biology takes things a step further: cells and cell components are built to a design produced by humans in order to produce specific products or devices. The starting point is not a cell (or cell component) that has evolved, but a synthetic cell (cell component) specifically designed to perform a non-natural function. Among other things, synthesized DNA is used, and natural as well as non-natural building blocks. As in architecture and electrical engineering, cell components (‘BioBricks’) and the production process will be standardized. In the future it may well be possible to build a complete synthetic cell.

Potential

Synthetic biology is seen as the ‘third technological revolution’, following on from the chip, the foundation of modern electronics, and biotechnology made possible with the discovery of the structure of DNA. Synthetic biology combines these two earlier developments, thus opening up new and promising possibilities. The University of Groningen therefore believes that it is of great strategic importance to invest in fundamental research that will advance this groundbreaking technology.

Support

The new centre, with four new Synthetic Biology sections, is not alone in this task, but will be supported by the Zernike Institute for Advanced Materials, the Stratingh Institute for Chemistry, and the Groningen Biomolecular Sciences and Biotechnology Institute (GBB). In the years to come, the CSB will launch an intensive recruitment campaign to attract top researchers and further steps will be taken to establish cooperative partnerships with knowledge centres and businesses in the Netherlands and abroad.

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>