Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nickel nanoparticles may contribute to lung cancer

24.08.2011
All the excitement about nanotechnology comes down to this: Structures of materials at the scale of billionths of a meter take on unusual properties.

Technologists often focus on the happier among these newfound capabilities, but new research by an interdisciplinary team of scientists at Brown University finds that nanoparticles of nickel activate a cellular pathway that contributes to cancer in human lung cells.

"Nanotechnology has tremendous potential and promise for many applications," said Agnes Kane, chair of the Department of Pathology and Laboratory Medicine in The Warren Alpert Medical School of Brown University. "But the lesson is that we have to learn to be able to design them more intelligently and, if we recognize the potential hazards, to take adequate precautions."

Kane is the senior author of the study published in advance online this month in the journal Toxicological Sciences.

Nickel nanoparticles had already been shown to be harmful, but not in terms of cancer. Kane and her team of pathologists, engineers and chemists found evidence that ions on the surface of the particles are released inside human epithelial lung cells to jumpstart a pathway called HIF-1 alpha. Normally the pathway helps trigger genes that support a cell in times of low oxygen supply, a problem called hypoxia, but it is also known to encourage tumor cell growth.

"Nickel exploits this pathway, in that it tricks the cell into thinking there's hypoxia but it's really a nickel ion that activates this pathway," said Kane, whose work is supported by a National Institues of Health Superfund Research Program Grant. "By activating this pathway it may give premalignant tumor cells a head start."

Size matters

The research team, led by postdoctoral research associate and first author Jodie Pietruska, exposed human lung cells to nanoscale particles of metallic nickel and nickel oxide, and larger microscale particles of metallic nickel. A key finding is that while the smaller particles set off the HIF-1 alpha pathway, the larger metallic nickel particles proved much less problematic.

In other words, getting down to the nanoscale made the metallic nickel particles more harmful and potentially cancer-causing. Kane said the reason might be that for the same amount of metal by mass, nanoscale particles expose much more surface area and that makes them much more chemically reactive than microscale particles.

Another important result from the work is data showing a big difference in how nickel nanoparticles and nickel oxide nanoparticles react with cells, Pietruska said. The nickel oxide particles are so lethal that the cells exposed to them died quickly, leaving no opportunity for cancer to develop. Metallic nickel particles, on the other hand, were less likely to kill the cells. That could allow the hypoxia pathway to lead to the cell becoming cancerous.

"What is concerning is the metallic nickel nanoparticles caused sustained activation but they were less cytotoxic," Pietruska said. "Obviously a dead cell can't be transformed."

Although Kane said the findings should raise clear concerns about handling nickel nanoparticles, for instance to prevent airborne exposure to them in manufacturing, they are not all that's needed to cause cancer. Cancer typically depends on a number of unfortunate changes, Kane said. Also, she said, the study looked at the short-term effects of nickel nanoparticle exposure in cells in a lab, rather than over the long term in a whole organism.

Still, in her lab Kane employs significant safeguards to keep researchers safe.

"We handle all these materials under biosafety level 2 containment conditions," she said. "I don't want anyone exposed. We're handling them as though they were an airborne carcinogen."

In addition to Kane and Pietruska, other authors on the paper are Ashley Smith, Kevin McNeil, and Anatoly Zhitkovich, a toxicologist; chemist Xinyuan Liu; and engineer Robert Hurt. Kane, Hurt, and Zhitkovich are associated with Brown's Institute for Molecular and Nanoscale Innovation.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>