Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interdisciplinary team demonstrates superconducting qualities of topological insulators

11.04.2013
Findings may prove useful in search for elusive Majorana quasiparticle
Topological insulators (TIs) are an exciting new type of material that on their surface carry electric current, but within their bulk, act as insulators. Since the discovery of TIs about a decade ago, their unique characteristics (which point to potential applications in quantum computing) have been explored theoretically, and in the last five years, experimentally.

But where in theory, the bulk of TIs carry no current, in the laboratory, impurities and disorder in real materials mean that the bulk is, in fact, conductive. This has proven an obstacle to experimentation with TIs: findings from prior experiments designed to test the surface conductivity of TIs unavoidably included contributions from the surplus of electrons in the bulk.

Now an interdisciplinary research team at the University of Illinois at Urbana-Champaign, in collaboration with researchers at Brookhaven National Laboratory’s Condensed Matter Physics and Materials Science Department, has measured superconductive surface states in TIs where the bulk charge carriers were successfully depleted. The research paper, "Symmetry protected Josephson supercurrents in three-dimensional topological insulators," was published this week in Nature Communications.

The experiments, conducted in the laboratory of Illinois condensed matter physicist Nadya Mason at the Frederick Seitz Materials Research Laboratory, were carried out by postdoctoral research associate Sungjae Cho using TI material—specially developed by the Brookhaven team—coupled to superconducting leads.

To deplete the electrons in the bulk, the team used three strategies: the TI material was doped with antimony, then it was doped at the surface with a chemical with strong electron affinity, and finally an electrostatic gate was used to apply voltage that lowered the energy of the entire system.

“One of the main results we found,” said Mason, “was in comparing the two experimental regimes, pure surface (bulk depleted of electrons) vs. bulk (excess electrons present in impurities in bulk material). We learned that even when you have the bulk, the superconductivity always goes through the surface of the material.”

This finding was established by comparing experiments with theoretical modeling by research team members at Illinois’s Department of Electrical and Computer Engineering—Assistant Professor Matthew Gilbert and graduate student Brian Dellabetta—which showed that superconductivity occured only at the surface of topological insulators and that this is a unique characteristic of these new materials.

It’s been predicted that TIs harbor the highly sought Majorana quasiparticle, a fermion which is theorized to be its own antiparticle and which if discovered, could serve as a quantum bit in quantum computing.

“Since we now have a better understanding of how topological insulators behave with regard to superconductivity, this will assist our search for the Majorana quasiparticle,” Mason explained.

The team also plans to investigate the same experimental configuration at lower energy to further explore its characteristics.

“The potential of this new material is very exciting. We are exploring possible uses for TIs in terms of conventional electronic devices and novel devices,” said Mason. “And if we can find the new particle predicted to exist in the material’s solid state, and then learn to manipulate its position relative to a second particle, we could use it for quantum computation.

“The implications for quantum computing are truly profound,” she explained. “With today’s technology, computer components really can’t get much smaller. If Majoranas behave as predicted and can be manipulated to serve as quantum bits, our future computers would be extraordinarily powerful; their components would be much smaller and would be able to store much more information.”

This research was funded by a grant from the Office of Naval Research under grant N0014-11-1-0728.
Contact: Nadya Mason, Department of Physics, 217/244-9114
Writer: Siv Schwink, Department of Physics, 217/552-5671

Nadya Mason | University of Illinois
Further information:
http://www.illinois.edu

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>