Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grant to Investigate Methane Gas from Marcellus Shale Drilling

28.07.2011
A multi-disciplinary team of Temple researchers will investigate the origins of methane gas found in drinking water wells near Marcellus Shale drilling sites in Pennsylvania and how science is influencing the formation of public policy on drilling. The research is being funded through a one-year, $66,000 multi-disciplinary grant from the William Penn Foundation.

“We know there are environmental concerns about the Marcellus Shale and there have been some accidents related to the drilling,” said Michel Boufadel, professor of environmental engineering and director of the Center for Natural Resources Development and Protection (NRDP) in Temple’s College of Engineering. “There has been a lot of hype about this issue and sometimes it is difficult to decipher what is fact-based and what is opinion.”

A recent study by researchers at Duke University showed that drinking wells located near Marcellus Shale drilling sites in Susquehanna County had an average concentration of methane gas that was 17 times greater than wells not near drilling sites. The study also concluded that the methane had originated deep below the earth’s surface.

Boufadel, principal investigator for the Temple project, said that the process used to drill into the shale creates enormous pressure that could be forcing pockets of methane toward the drinking wells. Temple’s research will attempt to determine if the methane gas found in the wells was released from the shale during drilling or whether it was located in pockets closer to the surface.

If the methane is originating in the upper formations, the likely cause is the drilling operation or the well casing construction — issues that could be addressed at a reasonable cost, said Boufadel. However, if the gas is originating in the deep formation, the entire hydrofracking process could be considered hazardous and would need to be stopped or dramatically modified, he said.

Michele Masucci, associate professor and chair of geography and urban studies in the College of Liberal Arts, and Nicholas Davatzes, assistant professor of earth and environmental science in the College of Science and Technology will serve as co-investigators on the research project to be conducted by the NRDP Center.

Boufadel said Masucci, a social scientist, will explore how the science of the Marcellus Shale drilling is reaching policy makers, how they are processing it and using it to formulate public policy on the extraction of gas from the Marcellus Shale.

Davatzes, a structural geologist who has conducted research on energy from deep geo-thermal wells, will play a crucial role in constructing the geology of the impacted region, Boufadel said.

“Environmental research is inherently multi-disciplinary; the challenges are not only technical or technological, but socio-political as well,” said Boufadel. “This project is a template for dealing with important environmental issues, such as the Marcellus Shale, where we have researchers from three colleges — Engineering, Science and Technology and Liberal Arts — coming together to find solutions.”

In addition to the research, the grant requires Temple to organize a symposium on Marcellus Shale which will be held in the fall.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>