Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Grant to Investigate Methane Gas from Marcellus Shale Drilling

A multi-disciplinary team of Temple researchers will investigate the origins of methane gas found in drinking water wells near Marcellus Shale drilling sites in Pennsylvania and how science is influencing the formation of public policy on drilling. The research is being funded through a one-year, $66,000 multi-disciplinary grant from the William Penn Foundation.

“We know there are environmental concerns about the Marcellus Shale and there have been some accidents related to the drilling,” said Michel Boufadel, professor of environmental engineering and director of the Center for Natural Resources Development and Protection (NRDP) in Temple’s College of Engineering. “There has been a lot of hype about this issue and sometimes it is difficult to decipher what is fact-based and what is opinion.”

A recent study by researchers at Duke University showed that drinking wells located near Marcellus Shale drilling sites in Susquehanna County had an average concentration of methane gas that was 17 times greater than wells not near drilling sites. The study also concluded that the methane had originated deep below the earth’s surface.

Boufadel, principal investigator for the Temple project, said that the process used to drill into the shale creates enormous pressure that could be forcing pockets of methane toward the drinking wells. Temple’s research will attempt to determine if the methane gas found in the wells was released from the shale during drilling or whether it was located in pockets closer to the surface.

If the methane is originating in the upper formations, the likely cause is the drilling operation or the well casing construction — issues that could be addressed at a reasonable cost, said Boufadel. However, if the gas is originating in the deep formation, the entire hydrofracking process could be considered hazardous and would need to be stopped or dramatically modified, he said.

Michele Masucci, associate professor and chair of geography and urban studies in the College of Liberal Arts, and Nicholas Davatzes, assistant professor of earth and environmental science in the College of Science and Technology will serve as co-investigators on the research project to be conducted by the NRDP Center.

Boufadel said Masucci, a social scientist, will explore how the science of the Marcellus Shale drilling is reaching policy makers, how they are processing it and using it to formulate public policy on the extraction of gas from the Marcellus Shale.

Davatzes, a structural geologist who has conducted research on energy from deep geo-thermal wells, will play a crucial role in constructing the geology of the impacted region, Boufadel said.

“Environmental research is inherently multi-disciplinary; the challenges are not only technical or technological, but socio-political as well,” said Boufadel. “This project is a template for dealing with important environmental issues, such as the Marcellus Shale, where we have researchers from three colleges — Engineering, Science and Technology and Liberal Arts — coming together to find solutions.”

In addition to the research, the grant requires Temple to organize a symposium on Marcellus Shale which will be held in the fall.

Preston M. Moretz | Newswise Science News
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>