Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grant to Investigate Methane Gas from Marcellus Shale Drilling

28.07.2011
A multi-disciplinary team of Temple researchers will investigate the origins of methane gas found in drinking water wells near Marcellus Shale drilling sites in Pennsylvania and how science is influencing the formation of public policy on drilling. The research is being funded through a one-year, $66,000 multi-disciplinary grant from the William Penn Foundation.

“We know there are environmental concerns about the Marcellus Shale and there have been some accidents related to the drilling,” said Michel Boufadel, professor of environmental engineering and director of the Center for Natural Resources Development and Protection (NRDP) in Temple’s College of Engineering. “There has been a lot of hype about this issue and sometimes it is difficult to decipher what is fact-based and what is opinion.”

A recent study by researchers at Duke University showed that drinking wells located near Marcellus Shale drilling sites in Susquehanna County had an average concentration of methane gas that was 17 times greater than wells not near drilling sites. The study also concluded that the methane had originated deep below the earth’s surface.

Boufadel, principal investigator for the Temple project, said that the process used to drill into the shale creates enormous pressure that could be forcing pockets of methane toward the drinking wells. Temple’s research will attempt to determine if the methane gas found in the wells was released from the shale during drilling or whether it was located in pockets closer to the surface.

If the methane is originating in the upper formations, the likely cause is the drilling operation or the well casing construction — issues that could be addressed at a reasonable cost, said Boufadel. However, if the gas is originating in the deep formation, the entire hydrofracking process could be considered hazardous and would need to be stopped or dramatically modified, he said.

Michele Masucci, associate professor and chair of geography and urban studies in the College of Liberal Arts, and Nicholas Davatzes, assistant professor of earth and environmental science in the College of Science and Technology will serve as co-investigators on the research project to be conducted by the NRDP Center.

Boufadel said Masucci, a social scientist, will explore how the science of the Marcellus Shale drilling is reaching policy makers, how they are processing it and using it to formulate public policy on the extraction of gas from the Marcellus Shale.

Davatzes, a structural geologist who has conducted research on energy from deep geo-thermal wells, will play a crucial role in constructing the geology of the impacted region, Boufadel said.

“Environmental research is inherently multi-disciplinary; the challenges are not only technical or technological, but socio-political as well,” said Boufadel. “This project is a template for dealing with important environmental issues, such as the Marcellus Shale, where we have researchers from three colleges — Engineering, Science and Technology and Liberal Arts — coming together to find solutions.”

In addition to the research, the grant requires Temple to organize a symposium on Marcellus Shale which will be held in the fall.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>