Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene leads to malformation of the urinary tract

13.03.2015

An interdisciplinary team of researchers under the direction of the University of Bonn Hospital have discovered a gene which is associated with a rare congenital anomaly of the urinary tract called classic bladder exstrophy. It increases the likelihood that the urinary tract will not form properly during embryonic development. The finding is an important step for understanding the development of urinary tract malformations in general and for developing prophylactic measures. The results are published in the current online edition of the journal "PloS Genetics".

The kidneys and urinary tract are the sites affected most frequently by congenital malformations. Approximately 1 out of every 200 children suffers from such a malformation.


Prof. Dr. Michael Ludwig, Dr. Heiko Reutter and Prof. Dr. Markus Nöthen of the University of Bonn Hospital (from left).

(c) Photo: Katharina Wislsperger/UKB

"These diseases make up about 20 to 30 percent of all congenital malformations," says Associate Professor Dr. Heiko Reutter from the Institute of Human Genetics and the Department of Neonatology and Pediatric Intensive Care Medicine of the University of Bonn.

For many years, the pediatrician has investigated the genetic causes of classic bladder exstrophy comprising malformations ranging from the bladder to the entire urinary tract. These malformations frequently result in urinary tract infections, incontinence, renal damage and sexual dysfunction.

Approximately one out of 20,000 newborns is affected by this rare disease which is considered to be one of the most severe forms of malformations on this spectrum. "Congenital classic bladder exstrophy thus represents an enormous challenge in the medical care of patients affected and their families," says Dr. Reutter.

Focus at the Center for Rare Diseases

To date, the genetic causes of this rare disease have been basically unknown. In the past ten years, with the bladder extrophy/epispadias self-help group and leading pediatric urologists and pediatric surgeons in Germany - including from the Barmherzigen Brüder Pediatric Hospital in Regensburg as well as the universities of Mainz and Ulm - researchers at the University of Bonn hospital have been able to gather the largest group of patients in the world.

The researchers in Bonn received additional support for the current study from researchers at the Max Planck Institute for Molecular Genetics in Berlin. Assistance was also provided by the Center for Rare Diseases at the University of Bonn Hospital (ZSEB). The researchers focus on rare uro-rectal malformations there.

Using blood samples from a total of 210 patients, the scientists isolated the genetic information and compared it with a control group of healthy persons. The researchers used automated analysis methods to record more than 700,000 genetic markers in each case which are evenly distributed throughout the DNA.

The evaluation using biostatistical methods revealed a clear connection with an altered gene: ISL1, which is located on chromosome five. "In this way, a gene in connection with this disease was identified for the very first time," says Prof. Dr. Michael Ludwig from the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn Hospital.

The search for other genes

This has been a breakthrough for science. "With the discovery of this gene, it now becomes possible to clarify the biological foundations of this disease," says Prof. Dr. Markus Nöthen from the Institute of Human Genetics from the University of Bonn. Beyond the genetic causes of classic exstrophy, the objective is to now identify risk factors during pregnancy and to develop preventive approaches from this for the unborn child.

Further investigations are intended to demonstrate which yet undiscovered genes play an additional role in the development of the disease. The scientists are still looking for affected to continue the studies. Anyone interested may email Dr. Reutter directly: reutter@uni-bonn.de.

Publication: Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy, "PLOS Genetics", DOI: 10.1371/journal.pgen.1005024.

Media contact information:

PD Dr. Heiko Reutter
Institute of Human Genetics/Department
of Neonatology and Pediatric Intensive Care Medicine
of the University of Bonn Hospital
Tel. ++49-(0)228-28751000
E-Mail: reutter@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Interdisciplinary Research:

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

New formulas for exploring the age structure of non-linear dynamical systems

23.01.2018 | Interdisciplinary Research

Drones learn to navigate autonomously by imitating cars and bicycles

23.01.2018 | Information Technology

Enhanced ball screw drive with increased lifetime through novel double nut design

23.01.2018 | Machine Engineering

VideoLinks Science & Research
Overview of more VideoLinks >>>