Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Easier Diagnosis of Esophageal Cancer


The Institute of Biological and Medical Imaging at Helmholtz Zentrum München is heading the ”Hybrid optical and optoacoustic endoscope for esophageal tracking” (ESOTRAC) research project, in which engineers and physicians together develop a novel hybrid endoscopic instrument for early diagnosis and staging of esophageal cancer. The device may reduce the number of unnecessary biopsies and, importantly, facilitate early-disease detection leading to earlier start of therapy, which improves therapeutic efficacy over late-disease treatment and leads to immense cost-savings. ESOTRAC has been awarded four million Euros from Horizon 2020, the EU framework program for research and innovation.

With more than 450 000 new cases per year and a five-year survival rate of only ten percent when diagnosed late, esophageal cancer (EC) is the sixth-leading cause of cancer-related deaths. Currently EC is detected using white-light endoscopy or random tissue biopsies, followed by histopathological analysis of excised tissue. Due to limitations of the current detection methods, EC is typically detected at an advanced stage which is treated surgically and attains poor survival prognosis.

New imaging technologies allow earlier diagnosis of tumors.

Source: Murad Omar/Helmholtz Zentrum München

ESOTRAC, a 4-year research program bringing together engineers and physicians, aims to significantly improve the detection of early-stage EC. The interdisciplinary, 5-country research team will develop an innovative endoscope that combines sensing of pathophysiological tissue signatures resolved by multi-spectral optoacoustic (photoacoustic) tomography (MSOT) with morphological disease signatures provided by optical coherence tomography (OCT).

The resulting system will operate in label free mode and, due to its tomographic ability, visualize sub-surface tissue features, providing superior information of the esophageal wall compared to conventional video endoscopes. This comprehensive sub-surface information is expected to detect early-stage EC and enable disease staging, neither of which can be done reliably today. The novel endoscope can be further useful in reducing the number of unnecessary biopsies by providing more accurate guidance to suspicious areas over white-light endoscopy.

Raising the bar for endoscopic care – and beyond

The device developed by ESOTRAC promises to change the landscape of gastroenterological endoscopy – beyond diagnosis of EC – by allowing rapid three-dimensional imaging of the entire esophageal wall as well as quantitation of disease biomarkers. “The combination of MSOT and OCT can shape the way physicians look at the esophagus in the near future,” said Prof. Vasilis Ntziachristos, ESOTRAC Coordinator, Director of the Institute of Biological and Medical Imaging at Helmholtz Zentrum München and Professor and Chair of Biological Imaging at the Technical University of Munich.

“From a clinical perspective we desperately need new technologies that improve imaging and combine information on molecular markers for early detection of disease and this research is trying to do exactly that” said Prof. Rebecca Fitzgerald, a world-leading clinical expert in esophageal cancer and lead physician at the MRC Cancer Unit at the Cambridge Biomedical Campus in the UK, one of the ESOTRAC partners.

Since one of the goals of ESOTRAC is to offer quantitative metrics of EC disease, toward personalized and precision medicine, the device may help equalize the quality of endoscopy-based care in rural and urban settings. The ESOTRAC endoscope will also be built to be as small and patient-friendly as possible, reducing the risk of gag reflex and therefore the need for sedation. In these ways, ESOTRAC aims to create an endoscope that can be widely deployed in gastroenterology clinics. At the same time, the lessons learned in building the ESOTRAC endoscope may help guide the design of next-generation imaging devices for the other body cavities, including the colon.

Further Information

To achieve these goals, ESOTRAC unites an international team of scientists and clinicians with world-leading know-how in bio-photonic imaging, ultrasound detectors, laser technology, software, catheters, medical device fabrication, EC clinical management and commercial exploitation. These researchers come from nine world-class universities, research institutes and medical device manufacturers in five European countries. The Helmholtz Zentrum München, as lead partner on the project, will drive the development not only of the endoscope but also of user-friendly operating software. Helmholtz researchers will explore the possibility of integrating an ultrasound module into the endoscope in order to enhance imaging performance and provide additional information that may assist in tumor staging. The ESOTRAC consortium partners are:

Helmholtz Zentrum München (Coordinator) - Germany
Amplitude Systemes SA – France
Ascenion GmbH – Germany
Denmarks Tekniske Universitet – Germany
Medizinische Universität Wien – Austria
Rayfos LTD – United Kingdom
Sonaxis SA - France
Statice SAS - France
University of Cambridge– United Kingdom

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Biological and Medical Imaging (IBMI) conducts research into in vivo imaging technologies for the biosciences. It develops systems, theories and methods of imaging and image reconstruction as well as animal models to test new technologies at the biological, preclinical and clinical level. The aim is to provide innovative tools for biomedical laboratories, for diagnosis and for the therapeutic monitoring of human diseases.

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail:

Scientific contact:
Prof. Dr. Vasilis Ntziachristos, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3852 - E-mail:

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>