Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climbing to the next level: the German Virtual Liver Network

05.08.2010
The aim of this unique research consortium is to grasp the whole organ and its functions in a computer model.

In April 2010, an ambitious new project was launched in Germany: The German Virtual Liver Network. Funded by the Federal Ministry of Education and Research (BMBF), this major interdisciplinary research initiative is the only one of its kind in the world that focuses effort on a single organ across multiple scales of complexity. With an allocated budget over five years of approximately 43 million euros, it is also the only research network worldwide to be financed by a single national organization in systems biology.

The Network’s goal is to create a computer model of the liver as a complete organ with all of its diverse and essential functions. Thus it should be possible to better understand the processes in the liver and to develop tailor-made medications.

A biochemical factory in the body
The liver is a unique organ: as the central metabolic organ of vertebrates, it synthesizes, converts and breaks down more than 10,000 substances daily, helping the body to digest food and detoxify itself. It aids digestion, controls iron uptake and synthesizes vital proteins such as coagulation factors. Furthermore, hepatic metabolism is a major factor that needs to be considered in drug development, as it is central to toxicity and drug efficacy. The exploration of the liver and its functions by the Network is therefore of the greatest relevance to medicine and the pharmaceutical industry.
Looking to the future with systems biology
In order to get an overall picture both of the liver as a whole and of the diverse and dynamic processes in the organ, the Network’s researchers are looking to systems biology for help. This branch of science, which deals with the exploration of biological processes at the systems level, seeks to create a holistic picture of dynamic life processes at all levels – from the genome to the proteome and up to the complete cell or even an entire organism. In order to achieve this goal, systems biology links quantitative methods from the field of molecular and cellular biology with techniques and tools from the areas of mathematics, computer sciences and systems sciences. “Systems biology can accelerate the transfer from academic research to use on patients and can cut costs in the development of medications. That’s why it is a key technology and a driving force of innovation for individualized medicine of the future,” emphasizes Federal Minister for Education and Research Annette Schavan in a BMBF's press release in July 2010.
From the cell to the whole organ
In recent years, the HepatoSys network dealt intensively with the systems biology of the liver cell. Building on these results, the project’s successor, the German Virtual Liver Network, now aims to understand the processes in cell aggregates up to the entire organ. For this ambitious project spanning the entire nation, 70 research groups from 41 institutions in science and industry have joined forces. Together these scientists aim to develop integrated computer models capable of generating experimentally testable predictions that are relevant to the physiology of the liver, as well as the function of the organism, and how this is disturbed in disease. This will contribute to an improved understanding of the liver as the body’s most important metabolic organ and how its function is affected in disease. By using validated simulations, these models will greatly benefit efforts to find new therapies, to predict how active substances distribute in the organ, where they attack, and how quickly they are broken down. Thus, medications can be developed in a more targeted, efficient and cost-effective manner and tailored to deliver the optimum dosage to the right patient at the right time.
A world leader
The German Virtual Liver Network is the first project worldwide to aim at building a truly multi-scale computer model of a complete organ– from the biomolecular and biochemical processes up to the anatomy of the whole organ – and including them in the simulation. “The challenge is immense, but we are looking forward to accepting it – not only to promote an understanding of the liver, but also to provide a strong impetus to the entire area of systems biological research. Our goal is to give evidence of a genuine impact on healthcare” says Adriano Henney, program director of the German Virtual Liver Network.

Sabine Trunz | idw
Further information:
http://www.sbmc2010.de
http://www.hepatosys.de/

More articles from Interdisciplinary Research:

nachricht Early detection of highly pathogenic influenza viruses
22.06.2015 | Justus-Liebig-Universität Gießen

nachricht Metallic glass: cracking the mystery of flaws
15.06.2015 | The Agency for Science, Technology and Research (A*STAR)

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>