Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climbing to the next level: the German Virtual Liver Network

05.08.2010
The aim of this unique research consortium is to grasp the whole organ and its functions in a computer model.

In April 2010, an ambitious new project was launched in Germany: The German Virtual Liver Network. Funded by the Federal Ministry of Education and Research (BMBF), this major interdisciplinary research initiative is the only one of its kind in the world that focuses effort on a single organ across multiple scales of complexity. With an allocated budget over five years of approximately 43 million euros, it is also the only research network worldwide to be financed by a single national organization in systems biology.

The Network’s goal is to create a computer model of the liver as a complete organ with all of its diverse and essential functions. Thus it should be possible to better understand the processes in the liver and to develop tailor-made medications.

A biochemical factory in the body
The liver is a unique organ: as the central metabolic organ of vertebrates, it synthesizes, converts and breaks down more than 10,000 substances daily, helping the body to digest food and detoxify itself. It aids digestion, controls iron uptake and synthesizes vital proteins such as coagulation factors. Furthermore, hepatic metabolism is a major factor that needs to be considered in drug development, as it is central to toxicity and drug efficacy. The exploration of the liver and its functions by the Network is therefore of the greatest relevance to medicine and the pharmaceutical industry.
Looking to the future with systems biology
In order to get an overall picture both of the liver as a whole and of the diverse and dynamic processes in the organ, the Network’s researchers are looking to systems biology for help. This branch of science, which deals with the exploration of biological processes at the systems level, seeks to create a holistic picture of dynamic life processes at all levels – from the genome to the proteome and up to the complete cell or even an entire organism. In order to achieve this goal, systems biology links quantitative methods from the field of molecular and cellular biology with techniques and tools from the areas of mathematics, computer sciences and systems sciences. “Systems biology can accelerate the transfer from academic research to use on patients and can cut costs in the development of medications. That’s why it is a key technology and a driving force of innovation for individualized medicine of the future,” emphasizes Federal Minister for Education and Research Annette Schavan in a BMBF's press release in July 2010.
From the cell to the whole organ
In recent years, the HepatoSys network dealt intensively with the systems biology of the liver cell. Building on these results, the project’s successor, the German Virtual Liver Network, now aims to understand the processes in cell aggregates up to the entire organ. For this ambitious project spanning the entire nation, 70 research groups from 41 institutions in science and industry have joined forces. Together these scientists aim to develop integrated computer models capable of generating experimentally testable predictions that are relevant to the physiology of the liver, as well as the function of the organism, and how this is disturbed in disease. This will contribute to an improved understanding of the liver as the body’s most important metabolic organ and how its function is affected in disease. By using validated simulations, these models will greatly benefit efforts to find new therapies, to predict how active substances distribute in the organ, where they attack, and how quickly they are broken down. Thus, medications can be developed in a more targeted, efficient and cost-effective manner and tailored to deliver the optimum dosage to the right patient at the right time.
A world leader
The German Virtual Liver Network is the first project worldwide to aim at building a truly multi-scale computer model of a complete organ– from the biomolecular and biochemical processes up to the anatomy of the whole organ – and including them in the simulation. “The challenge is immense, but we are looking forward to accepting it – not only to promote an understanding of the liver, but also to provide a strong impetus to the entire area of systems biological research. Our goal is to give evidence of a genuine impact on healthcare” says Adriano Henney, program director of the German Virtual Liver Network.

Sabine Trunz | idw
Further information:
http://www.sbmc2010.de
http://www.hepatosys.de/

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>