Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach needed to prevent major 'systemic failures'

A Purdue University researcher is proposing development of a new cross-disciplinary approach for analyzing and preventing systemic failures in complex systems that play a role in calamities ranging from huge power blackouts to the BP Deepwater Horizon disaster and the subprime mortgage crisis.

"The striking similarities in such catastrophes necessitates a broader perspective to better understand such failures," said Venkat Venkatasubramanian, a professor of chemical engineering. "In the history of systemic failures, a few disasters have served as wake-up calls. The Flixborough chemical plant accident in the United Kingdom in 1974, where a Nypro UK plant explosion killed 26 people, was one such call."

Other such major catastrophes, he said, include a 1984 Union Carbide accident in Bhopal, India, which killed more than 2,000 and injured more than 100,000, and the 1988 failure of an oil platform operated by Occidental Petroleum in the North Sea, which resulted in 167 deaths and about $2 billion in losses.

"Such systemic failures are not limited to the chemical and petrochemical industries," Venkatasubramanian said. "The Northeast electrical power blackout in 2003 and a recent massive recall of drug products are both systemic failures. Financial disasters such as Enron, WorldCom, the subprime mortgage derivatives crisis and the Madoff Ponzi scam also belong to the same class."

The need for a new cross-disciplinary framework to address such systemic failures was introduced in an article appearing in the January 2011 issue of the AIChE Journal.

"We must study all disasters from a common systems engineering perspective so that one can thoroughly understand the commonalities as well as the differences in order to better design and control such systems in the future," Venkatasubramanian said. "There is an important role for universities here, as well, in creating and disseminating knowledge about abnormal-events management in complex engineered systems and their public and corporate policy implications."

Such studies need to be carried out, he said, with public policy experts so that the scientific and engineering lessons get translated into effective policies and regulations.

"Typically, systemic failures occur due to fragility in complex systems," Venkatasubramanian said. "Modern technological advances are creating a rapidly increasing number of complex engineered systems, processes and products, which pose considerable challenges in ensuring their proper design, analysis, control, safety and management for successful operation over their life cycles."

The sheer scale and complexity of interactions between elements, including people, in such systems-of-systems make them fragile.

"In particular, the nonlinear interactions among a large number of interdependent components and the environment can lead to what we call 'emergent' behavior," Venkatasubramanian said. "In other words, the behavior of the whole is different than the sum of its parts and can be difficult to anticipate and control. This is further compounded by human errors, equipment failures and dysfunctional interactions among components and subsystems that make systemic risks even more likely if one is not vigilant all the time."

Postmortem investigations have shown that major disasters rarely occur due to a single failure of equipment or personnel. Instead, layers of failures of equipment, systems, processes, regulations and people usually are at fault, he said.

Often, Venkatasubramanian said, the responsibility for an accident rests with the top levels of company management and a poor corporate culture regarding safety.

"Professor Venkatasubramanian's article in AIChE discusses the surprising commonalities of systemic failures that lead to disasters, such as the Gulf of Mexico oil spill, and outlines a role that academic institutions can play to prevent such destructive events from happening in the future," said John W. Bickham, director of Purdue's Center for the Environment and a professor in the Department of Forestry and Natural Resources. "The highly interdisciplinary field of systems engineering will play a key role in the development of policies and procedures that can protect the environment and human health and safety in the future."

Writer: Emil Venere, 765-494-4709,
Sources: Venkat Venkatasubramanian, 765-494 0734,
John W. Bickham, 765-494-5146,

Emil Venere | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>