Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

d3o in shoes for skateboarders

08.02.2005


d3o lab was granted a government SMART award in 2003 and 2004 for the development of a high technology application. Since then they have been developing the technology in the laboratory and working with a diverse range of companies from medical to extreme sports to realise the material’s potential.



The material qualities of d3o are unlike any other material currently available and it has an endless list of possible uses as a result. Richard Palmer, Managing Director of d3o lab comments: “we get enquiries from customers and researchers alike every day, the many varied future possibilities of the material are very exciting for us.”

So when Globe shoes contacted d3o about an idea to put d3o into a skate shoe, d3o lab were very interested, but didn’t realise quite how valuable a material like this would be to a skateboarder, when incorporated into a shoe designed for this specific sport.


A 4mm thick sheet of d3o material is inserted between the midsole and the sock liner along the whole length of the “Icon” shoe from heel to toe, replacing a thick 20-25mm piece of EVA foam. The d3o sheet has a lattice structure, which means it is light and breathable, ideal for this application. What this has meant for the design of a skate shoe is a significant development. It is now possible to produce a lower profile shoe that is in tune with the body movements of the wearer, and is reactive when he or she needs it, reducing painful heel and foot bruising, which is a common problem for skateboarders who often land from heights of up to 3 meters.

In tests using a specially designed testing rig with an integral electronic force transducer to measure the amount of force transmitted through each material, the results show that d3o transmits half the force of EVA foam whilst spreading this over twice the area, effectively making it 4 times better at impact pressure absorption.

Richard Palmer, Managing director of d3o Lab, said he believes the material will be a godsend for skateboarders.

“We have worked with a number of skate professionals to understand their real needs and the response we have had in tests has been fantastic. Unlike EVA d3o is also soft and flexible which gives the rider great feedback and control as well as much better shock absorption from big jumps,” he says. d3o lab are focused on working closely with sports professionals to improve biometrics (body freedom) and by using d3o they will gain a considerable advantage in their field.
Al Partanan, Globe skate team manager said, “It looks great and feels insane.”

This is such a significant development because it means that the skateboarder has the potential to vastly improve his or her performance as a result of the increased level of control over the skateboard. We are all familiar with the advancements in footwear for professional running for example; the runner demands a lightweight, totally responsive shoe designed around their individual foot mechanics. Issues such as pronation or supination (roll of the foot when in motion), the need for increased midfoot support or motion control as a result of the runner’s individual needs are all taken into account when designing a shoe for the professional. As with any sport at the top level, control is a big part of getting the best performance out of your body, which is the philosophy behind the Icon shoe.

Ruth Gough | alfa
Further information:
http://www.d3olab.com

More articles from Innovative Products:

nachricht New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University
11.08.2015 | Tohoku University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>