Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Xbox to T-Cells: Researchers Borrow Video Game Technology to Model Human Biology

17.09.2008
Researchers have harnessed the massive computing power that drives video games' spectacular 3D imaging to understand the most intricate of real-life systems.

A team of researchers at Michigan Technological University is harnessing the computing muscle behind the leading video games to understand the most intricate of real-life systems.

Led by Roshan D'Souza, the group has supercharged agent-based modeling, a powerful but computationally massive forecasting technique, by using graphic processing units (GPUs), which drive the spectacular imagery beloved of video gamers. In particular, the team aims to model complex biological systems, such as the human immune response to a tuberculosis bacterium.

Computer science student Mikola Lysenko, who wrote the software, demonstrates. On his computer monitor, a swarm of bright green immune cells surrounds and contains a yellow TB germ. These busy specks look like 3D-animations from a PBS documentary, but they are actually virtual T-cells and macrophages—the visual reflection of millions of real-time calculations.

"I've been asked if we ran this on a supercomputer or if it's a movie," says D'Souza, an assistant professor of mechanical engineering–engineering mechanics. He notes that their model is several orders of magnitude faster than state-of-the art agent modeling toolkits. According to the researchers, however, this current effort is small potatoes.

"We can do it much bigger," says D'Souza. "This is nowhere near as complex as real life." Next, he hopes to model how a TB infection could spread from the lung to the patient's lymphatic system, blood and vital organs.

Dr. Denise Kirschner, of the University of Michigan in Ann Arbor, developed the TB model and gave it to D'Souza's team, which programmed it into a graphic processing unit. Agent-based modeling hasn't replaced test tubes, she says, but it is providing a powerful new tool for medical research.

Computer models offer significant advantages. "You can create a mouse that's missing a gene and see how important that gene is," says Kirschner. "But with agent-based modeling, we can knock out two or three genes at once." In particular, agent-based modeling allows researchers to do something other methodologies can't: virtually test the human response to serious insults, such as injury and infection.

While agent-based modeling may never replace the laboratory entirely, it could reduce the number of dead-end experiments. "It really helps scientists focus their thinking," Kirschner said. "The limiting factor has been that these models take a long time to run, and [D'Souza's] method works very quickly and efficiently," she said.

Dr. Gary An, a surgeon specializing in trauma and critical care in Northwestern University's Feinberg School of Medicine, is a pioneer in the use of agent-based modeling to understand another matter of life and death: sepsis. With billions of agents, including a variety of cells and bacteria, these massive, often fatal infections have been too complex to model economically on a large scale, at least until now.

"The GPU technology may make this possible," said An. "This is very interesting stuff, and I'm excited about it."

About agent-based modeling

Agent-based modeling simulates the behaviors of complex systems. It can be used to predict the outcomes of anything from pandemics to the price of pork bellies. It is, as the name suggests, based on individual agents: e.g., sick people and well people, predators and prey, etc. It applies rules that govern how those agents behave under various conditions, sets them loose, and tracks how the system changes over time. The outcomes are unpredictable and can be as surprising as real life.

Agent-based modeling has been around since the 1950s, but the process has always been handicapped by a shortage of computing power. Until recently, the only way to run large models quickly was on multi-million-dollar supercomputers, a costly proposition.

D'Souza's team sidestepped the problem by using GPUs, which can run models with tens of millions of agents with blazing speed.

"With a $1,400 desktop, we can beat a computing cluster," says D'Souza. "We are effectively democratizing supercomputing and putting these powerful tools into the hands of any researcher. Every time I present this research, I make it a point to thank the millions of video gamers who have inadvertently made this possible."

The Tech team also looks forward to applying their model in other ways. "We can do very complex ecosystems right now," said Ryan Richards, a computer science senior. "If you're looking at epidemiology, we could easily simulate an epidemic in the US, Canada and Mexico."

"GPUs are very difficult to program. It is completely different from regular programming," said D'Souza, who deflects credit to the students. "All of this work was done by CS undergrads, and they are all from Michigan Tech. I've had phenomenal success with these guys—you can't put a price tag on it."

D'Souza's work was supported by a grant from the National Science Foundation. In addition to Lysenko and Richards, computer science undergraduate Nick Smolinske also contributed to the research.

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>