Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Happens in a Programmer’s Head?

23.04.2014

An international team of experts around the scientists Dr Janet Siegmund and Professor Sven Apel of the University of Passau recently addressed this question in their research. Using functional magnetic resonance imaging, they sought to unravel the mystery of program comprehension, why language skills play a crucial role in programming − and what can be done to improve programming education and future programming languages.

In the quest of understanding how software developers think during programming, an international team of scientists from Germany and the United States observed programmers going about their everyday task of program comprehension while lying inside a functional magnetic resonance imaging (fMRI) scanner.

By measuring changes in the blood oxygen level in the brain, the fMRI scans allowed researchers to draw conclusions about which brain areas were active during the exercise. The study was conducted in close collaboration with fMRI experts from Leibniz Institute for Neurobiology in Magdeburg, Germany, and is the first of its kind in computer science and programming research. One of its key findings is that comprehending computer programs activates the same brain areas as understanding natural language.

“We now have first evidence that learning a programming language is closely related to learning a foreign language,” said Sven Apel. “Until now, scientific debates about the suitability of a particular programming language or method of programming education invariably relied on indirect observations and, as a result, always involved a certain amount of speculation.”

In addition to providing insights into the way similar studies could be designed and carried out in the future, the study’s results show new ways of how programming education can be improved in the long term. “Our study opens the door to a whole new world of possibilities of making learning to program more intuitive, so as to inspire more people – particularly women and schoolchildren – to learn about this technical area,” Janet Siegmund explained.

The results of this research may even lead to the development of more refined software tools and programming languages that tie in with software developers’ natural way of thinking – and make them more efficient in their day-to-day work. “We hope that software will be less prone to errors in future, which will significantly reduce the cost of developing and maintaining software. Today, software maintenance costs – i.e. avoiding and fixing errors such as the notorious Heartbleed bug – account for up to 80% of the total costs incurred throughout the entire software lifecycle,” said Janet Siegmund.

As the challenges involved in this project could only be tackled by an interdisciplinary network of scientists, the team was comprised of a number of researchers working in various different disciplines and countries: Janet Siegmund and Sven Apel (University of Passau, Germany), André Brechmann and Anja Bethmann (Leibniz Institute for Neurobiology, Magdeburg, Germany), Christian Kästner (Carnegie Mellon University, USA), Chris Parnin (Georgia Institute of Technology, USA), Thomas Leich (Metop GmbH, Magdeburg, Germany), and Gunter Saake (University of Magdeburg, Germany).

“The idea for this project arose during a workshop of researchers from the University of Magdeburg and the Leibniz Institute for Neurobiology,” said Janet Siegmund. “I found working at the intersection between computer science, psychology, and neurobiology immediately very fascinating”. Janet Siegmund received her Ph.D. from the University of Magdeburg and joined the University of Passau’s Chair of Software Product Lines as a postdoctoral research fellow in August 2013.

The Chair was established as part of the highly respected Heisenberg programme of the German Research Foundation (DFG). Following the publication of the results at the International Conference on Software Engineering, the leading international conference in its field, the research has received considerable attention from the international academic community, as it is the first study to provide solid evidence in an area that until now had to resort to indirect measures.

For further information, contact Dr Janet Siegmund, Faculty of Computer Science and Mathematics, University of Passau (e-mail: siegmunj@fim.uni-passau.de, phone: +49 851 509 3239) or the Media Relations Section of the University of Passau (phone: +49 851 509 1439).

Weitere Informationen:

Link to the original study: http://www.infosun.fim.uni-passau.de/cl/publications/docs/SKA+14.pdf

Katrina Jordan | idw - Informationsdienst Wissenschaft

Further reports about: Neurobiology Software fMRI programmers programming software developers

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>