Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW Computer Scientists Enhance Robotic Manufacturing

27.01.2015

Some industrial robots are hulking, highly specialized pieces of machinery that are cordoned off by cages from human factory workers.

But manufacturers have also begun experimenting with a new generation of “cobots” designed to work side-by-side with humans, and University of Wisconsin-Madison researchers are playing an important role in making these human-robot collaborations more natural and efficient.


Photo: Rethink Robotics, Inc.

Baxter, introduced in 2012 by the company Rethink Robotics, is a two-armed robot with a tablet-like panel for its "eyes."

Bilge Mutlu, an assistant professor of computer sciences, is working with counterparts at the Massachusetts Institute of Technology (MIT) to determine best practices for effectively integrating human-robot teams within manufacturing environments. Their research is funded by a three-year grant from the National Science Foundation (NSF) as part of its National Robotics Initiative program.

Furniture maker Steelcase, a global company headquartered in Grand Rapids, Michigan, is also a partner. “Working with world-class research universities like UW is critical to our strategy to evolve our industrial systems and develop industry-leading capabilities,” says Steelcase’s Edward Vander Bilt. “Our hope with this research is that we will learn how to extend human-robot collaboration more broadly across our operations.”

In recent years, the robotics industry has introduced new platforms that are less expensive and intended to be easier to reprogram and integrate into manufacturing. Steelcase owns four next-generation robots based on a platform called Baxter, made by Rethink Robotics. Each Baxter robot has two arms and a tablet-like panel for “eyes” that provide cues to help human workers anticipate what the robot will do next.

“This new family of robotic technology will change how manufacturing is done,” says Mutlu. “New research can ease the transition of these robots into manufacturing by making human-robot collaboration better and more natural as they work together.”

Mutlu directs UW-Madison’s Human-Computer Interaction Laboratory and serves as the principal investigator on the UW side of the collaboration. He works closely with Julie A. Shah, an assistant professor of aeronautics and astronautics at MIT.

Mutlu’s team is building on previous work related to topics such as gaze aversion in humanoid robots, robot gestures and the issue of “speech and repair.” For example, if a human misunderstands a robot’s instructions or carries them out incorrectly, how should the robot correct the human?

At MIT, Shah breaks down the components of human-robot teamwork and tries to determine who should perform various tasks. Mutlu’s work complements Shah’s by focusing on how humans and robots actually interact.

“People can sometimes have difficulty figuring out how best to work with or use a robot, especially if its capabilities are very different from people’s,” says Shah. “Automated planning techniques can help bridge the gap in our capabilities and allow us to work more effectively as a team.”

Over the summer, UW-Madison computer sciences graduate student Allison Sauppé traveled to Steelcase headquarters to learn more about its efforts to incorporate Baxter into the production line. She found that perceptions of Baxter varied according to employees’ roles.

While managers tended to see Baxter as part of the overall system of automation, front-line workers had more complex feelings. “Some workers saw Baxter as a social being or almost a co-worker, and they talked about Baxter as if it were another person,” she says. “They unconsciously attributed human-like characteristics.”

—Jennifer Smith

Contact Information
Bilge Mutlu, bmutlu@wisc.edu, 608-262-6635

Jennifer Smith | newswise
Further information:
http://www.wisc.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>