Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-wideband radio rides a beam of light

21.11.2008
Multiple high-definition videos and other data-rich services may soon stream through homes, offices, ships and planes via new hybrid optical/ultra-wideband-radio systems developed by European researchers.

Moshe Ran, Coordinator of the EU-funded project, UROOF (Photonic components for Ultra-wideband Radio Over Optical Fiber), has a vision. He wants to see streams of high-definition video and other high-bandwidth services flowing through homes, office buildings, and even ships and planes, through a happy marriage of optical and ultra-wideband radio technologies.

“It’s a natural combination that can bring a lot of advantages to the world,” says Ran.

The wireless signals that feed your Bluetooth earbud or let you surf the web from the corner coffee shop fade into the electronic background after ten metres or so. Starting in mid-2006, UROOF researchers set out to find an inexpensive way to stretch that range to hundreds or thousands of metres.

The researchers envisioned a hybrid system, in which ultra-wideband (UWB) radio signals could be transformed into light beams, relayed over long distances via inexpensive optical fibres, and then transformed back to radio again.

“You can’t extend the range over the air,” says Ran. “So if you want to overcome the limitations of the short range, using optical fibre is a very elegant way of doing it.”

The UROOF researchers decided to focus on UWB signals because they can carry a lot of data – some 480 megabits per second, or 20 times faster than dsl.

UROOF technology has the potential to increase broadband capacity by two or three orders of magnitude while at the same time addressing health and safety concerns by reducing signal intensity by a comparable amount.

Fast and faster

The first device the UROOF team set out to build was an access node that would efficiently transform UWB to optical, and optical to UWB.

After trying a variety of approaches, the team homed in on silicon-germanium (SiGe) phototransistors, which currently can process 10 GHz signals, and have the potential to handle much higher bandwidths.

They coupled the SiGe phototransistors to new low-cost, off-the-shelf, vertical-cavity surface-emitting lasers (VCSELs). A VCSEL is a type of diode that emits a laser beam perpendicular to its top surface.

“Right now we are using a state-of-the-art VCSEL that was not available at the start of the project,” says Ran. “We’re using it to show that this technology is viable and available.”

The researchers found that the strength of a UWB signal changes markedly as a user moves toward or away from an antenna. As a result, they had to develop gain-control circuitry to stabilise the input signal.

They have now demonstrated an integrated transceiver, dubbed Access Node 1, at several international forums, most recently at the International Conference on Ultra-wideband, which met in Hanover, Germany in September.

“We showed that with Access Node 1 we can transmit three streams of 480 megabits per second on the same fibre with negligible distortion,” says Ran. “That’s enough to transmit at least three streams of compressed high-definition television.”

Access Node 1 costs less than its developers expected – under $100 (around €74) per unit. The UROOF team has also fabricated an even faster transceiver, not surprisingly called Access Node 2, which uses a different device, called an electroabsorbtion transceiver, or EAT, in which an optical signal is directly modulated by a radio signal.

The UROOF EAT system starts with a central laser that generates an unmodulated optical signal and sends it through a single optical fibre to remote units. In its downlink mode, the central unit receives a UWB radio signal, modulates the optical carrier, and beams it to the remote units. In the uplink mode, a remote EAT modulates the optical signal and sends it back to the central station.

The EAT based Access Node 2 has the potential to carry far more information than Access Node 1, but there is a catch. “With EAT you can approach 60 GHz,” says Ran, “but it is expensive.”

The UROOF team is actively working to increase the bandwidth of Access Node 2 and reduce its cost.

Ran is encouraged by the progress UROOF has made. They have shown that UWB signals can be beamed over hundreds of metres using inexpensive optical technology, with greater bandwidth and longer distances in sight.

“As ultra-wideband technology penetrates the mass market – within the next two years – it will be possible to manufacture an access node that will meet the demand very nicely,” says Ran.

The UROOF project received funding from ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90217

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>