Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-wideband radio rides a beam of light

21.11.2008
Multiple high-definition videos and other data-rich services may soon stream through homes, offices, ships and planes via new hybrid optical/ultra-wideband-radio systems developed by European researchers.

Moshe Ran, Coordinator of the EU-funded project, UROOF (Photonic components for Ultra-wideband Radio Over Optical Fiber), has a vision. He wants to see streams of high-definition video and other high-bandwidth services flowing through homes, office buildings, and even ships and planes, through a happy marriage of optical and ultra-wideband radio technologies.

“It’s a natural combination that can bring a lot of advantages to the world,” says Ran.

The wireless signals that feed your Bluetooth earbud or let you surf the web from the corner coffee shop fade into the electronic background after ten metres or so. Starting in mid-2006, UROOF researchers set out to find an inexpensive way to stretch that range to hundreds or thousands of metres.

The researchers envisioned a hybrid system, in which ultra-wideband (UWB) radio signals could be transformed into light beams, relayed over long distances via inexpensive optical fibres, and then transformed back to radio again.

“You can’t extend the range over the air,” says Ran. “So if you want to overcome the limitations of the short range, using optical fibre is a very elegant way of doing it.”

The UROOF researchers decided to focus on UWB signals because they can carry a lot of data – some 480 megabits per second, or 20 times faster than dsl.

UROOF technology has the potential to increase broadband capacity by two or three orders of magnitude while at the same time addressing health and safety concerns by reducing signal intensity by a comparable amount.

Fast and faster

The first device the UROOF team set out to build was an access node that would efficiently transform UWB to optical, and optical to UWB.

After trying a variety of approaches, the team homed in on silicon-germanium (SiGe) phototransistors, which currently can process 10 GHz signals, and have the potential to handle much higher bandwidths.

They coupled the SiGe phototransistors to new low-cost, off-the-shelf, vertical-cavity surface-emitting lasers (VCSELs). A VCSEL is a type of diode that emits a laser beam perpendicular to its top surface.

“Right now we are using a state-of-the-art VCSEL that was not available at the start of the project,” says Ran. “We’re using it to show that this technology is viable and available.”

The researchers found that the strength of a UWB signal changes markedly as a user moves toward or away from an antenna. As a result, they had to develop gain-control circuitry to stabilise the input signal.

They have now demonstrated an integrated transceiver, dubbed Access Node 1, at several international forums, most recently at the International Conference on Ultra-wideband, which met in Hanover, Germany in September.

“We showed that with Access Node 1 we can transmit three streams of 480 megabits per second on the same fibre with negligible distortion,” says Ran. “That’s enough to transmit at least three streams of compressed high-definition television.”

Access Node 1 costs less than its developers expected – under $100 (around €74) per unit. The UROOF team has also fabricated an even faster transceiver, not surprisingly called Access Node 2, which uses a different device, called an electroabsorbtion transceiver, or EAT, in which an optical signal is directly modulated by a radio signal.

The UROOF EAT system starts with a central laser that generates an unmodulated optical signal and sends it through a single optical fibre to remote units. In its downlink mode, the central unit receives a UWB radio signal, modulates the optical carrier, and beams it to the remote units. In the uplink mode, a remote EAT modulates the optical signal and sends it back to the central station.

The EAT based Access Node 2 has the potential to carry far more information than Access Node 1, but there is a catch. “With EAT you can approach 60 GHz,” says Ran, “but it is expensive.”

The UROOF team is actively working to increase the bandwidth of Access Node 2 and reduce its cost.

Ran is encouraged by the progress UROOF has made. They have shown that UWB signals can be beamed over hundreds of metres using inexpensive optical technology, with greater bandwidth and longer distances in sight.

“As ultra-wideband technology penetrates the mass market – within the next two years – it will be possible to manufacture an access node that will meet the demand very nicely,” says Ran.

The UROOF project received funding from ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90217

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>