Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Radars are Better than One: Field Campaign Demonstrates Two New Instruments

14.08.2014

Putting three radars on a plane to measure rainfall may seem like overkill. But for the Integrated Precipitation and Hydrology Experiment field campaign in North Carolina recently, more definitely was better.

The three instruments, developed by the High Altitude Radar group at NASA's Goddard Space Flight Center in Greenbelt, Maryland, flew as part of the Global Precipitation Measurement (GPM) mission’s six-week ground-validation program that took place May 1 through June 15 in the southern Appalachians, specifically to measure rain in difficult-to-forecast mountain regions. In addition to validating measurements, the campaign tested data-processing algorithms made by the GPM Core Observatory, launched in February.


This image shows severe thunderstorms over South Carolina as observed from NASA’s ER-2 aircraft flying at 65,000 feet during the Integrated Precipitation and Hydrology Experiment recently.

Image Credit: NASA

The campaign represented a first for NASA. Never before has the agency flown more than two radar systems, tuned to different frequencies, to measure rainfall in the field. In addition, two of the instruments were making their maiden flight to demonstrate technological improvements that may pave the way for future high-performance airborne or space-borne precipitation radars for studying storms.

Future precipitation missions and, more particularly, the Aerosol Clouds Ecology, or ACE, mission, which the National Research Council recommended in its Earth Science Decadal Survey, have made the development of new radar systems to observe clouds and light precipitation a priority.

... more about:
»Cloud »Flight »GPM »NASA »Radar »Space »clouds »frequencies »raindrops »rainfall

Why Radar and Why Three?

The decision to fly three different systems was far from overkill, according to campaign scientists.

Rainfall comes in more than 31 flavors, from tiny cloud droplets and misty drizzle, to fat raindrops and two-inch hailstones, and, of course, everything in between. Different radar frequencies pick up different precipitation types, generally based on size and whether the particles are ice or liquid. Radars flying with multiple frequencies can study more precipitation types and identify where they occur inside clouds, giving scientists a more complete picture of the inner workings of a rainstorm. 

In particular, lower-microwave frequencies can detect heavy rain all the way to the ground. But tiny cloud particles require a higher-microwave frequency signal to detect them. Because that signal sometimes gets attenuated before it makes it all the way through the cloud and back to the radar, precipitation radars traditionally require a large, high-powered antenna.

What's Old is New Again

Enter the Cloud Radar System, a 20-year-old radar that has been completely rebuilt from the inside out, said Gerry Heymsfield of Goddard's High Altitude Radar group, which revamped the instrument. “The old one was a good radar,” Heymsfield said, “but the big difference in the new one is we’re using a solid-state transmitter.” The new transmitter, which sends the radar pulse, requires less power, occupies less space, and returns more reliable results — advances that make a radar system more suitable for aircraft and satellites.

The Cloud Radar System also sports a new antenna for receiving the data-laden return signals, or backscatter, of the radar pulse. Partners at Northrup Grumman designed the new antenna, led by Goddard Principal Investigator Paul Racette, and the result is a scaled down, proof-of-concept of what may one day fly in space, Heymsfield said.

The Cloud Radar System design grew out of a similar approach the High Altitude Radar group used to build the two other radars that measured rainfall during the campaign: the High-altitude Wind and Rain Profiler (HIWRAP), and the ER-2 X-Band Radar (EXRAD).

Satellite Simulator

During the field campaign in North Carolina, all three radars flew at an altitude of 65,000 feet on NASA’s ER-2 aircraft, managed by Armstrong Flight Research Center in Edwards, California. Beneath the ER-2, a second plane, managed by the University of North Carolina, flew through clouds to collect data on the details of the precipitation and cloud particles. On the surface, NASA's GPM team worked with NOAA's Hydrometeorological Test Bed and Duke University to capture precipitation as it hit the ground, using ground-based radar that scanned the air between the surface and the rainclouds and a network of rain gauges throughout the mountains and valleys.

During the six-week field campaign, HIWRAP — one of several instruments also used on NASA’s Hurricane and Severe Storm Sentinel mission flying later this summer and fall — stood in for the GPM satellite. Its two radar frequencies, 35 gigahertz for light rain and 13.5 gigahertz for heavy rain, are nearly identical to the GPM Core Observatory's Dual-frequency Precipitation Radar. Scientists collected the data, which they now will process with computer algorithms specifically designed to convert radar-retrieval data into rain estimates. They then will compare those estimates with the ground data to determine whether they need to fine-tune the algorithms, Heymsfield said.

EXRAD, like the retooled Cloud Radar System, made its flight debut during the campaign. It complemented HIWRAP by gathering data in the 10-gigahertz frequency band ideal for measuring big raindrops and hail in thunderstorms. Unlike the other radars that just point down, EXRAD also has a scanning capability to capture rainfall over a wider field of view below.

Unique Capability

Multiple radars with multiple frequencies looking at the same storm provided the science team with a unique capability, Heymsfield said. As the ER-2 flew overhead, the radars and other instruments captured how the range of cloud droplets, raindrops, and ice pellets moved and changed relative to one another over time. Those observations get at the heart of how storm systems behave, which in turn will lead to better models used for weather and flood forecasting, Heymsfield said.

“When you look at different clouds with different frequencies, it tells a lot about the cloud particles that are in there,” said Heymsfield. “Having four frequencies on the ER-2 allowed us to measure a much broader range of cloud and precipitation that will help both GPM and future cloud and precipitation missions.”

 

Ellen Gray | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/three-radars-are-better-than-one-field-campaign-demonstrates-two-new-instruments/

Further reports about: Cloud Flight GPM NASA Radar Space clouds frequencies raindrops rainfall

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>