Incorrect. Another captcha appears. You try again. Also incorrect. A third captcha appears. You start rethinking your purchase.
University at Buffalo computer scientist Venu Govindaraju, who pioneered machine recognition of human handwriting, believes that this annoying 21st-century problem has a decidedly old-fashioned solution: handwriting.
“Here at UB’s Center for Unified Biometrics, we’re the only ones who have proposed and thoroughly studied handwritten captchas,” says Govindaraju. “Our perspective is that humans are good at reading handwriting, machines are not. It comes naturally to humans. But computer scientists typically consider handwriting a hopeless case, until someone comes along and shows them that it isn’t.”
Govindaraju should know. Research he and his UB colleagues conducted in the 1990s helped the U.S. Postal Service establish the first machines that could read handwritten addresses, a feat that many at the time -- especially in industry -- said simply could not be done. In 1996, after years of research, the UB research enabled the USPS to be able to start machine-reading of handwritten addresses, boosting efficiency and saving the agency millions of dollars each year.
Govindaraju believes a similar success can occur with captchas. One of his doctoral students at UB has graduated and was hired by Yahoo! on the basis of his work developing “simulated” handwritten captchas.
“We developed an archive that can automatically generate as many different styles of handwriting as we want,” says Govindaraju.
The research is based on pattern recognition, a subfield of machine learning in computer science that is concerned with developing systems based on detecting patterns in data.
Similar issues are being studied by Govindaraju and his UB colleagues in order to develop “smart room” technologies, supported by an HP Labs Innovation Research award.
“Smart rooms” are indoor environments equipped with sensitive, but unobtrusive devices, such as cameras and microphones that can identify and track the movements and gestures of inhabitants for a broad range of applications, from providing supplemental supervision in assisted living facilities for the elderly or disabled, to monitoring office workplaces and retail establishments for security. Eventually, the goal is to extend “smart room” features to larger arenas, such as shopping centers, airports and other transportation centers.
Biometrics that CUBS researchers are studying for “smart room” applications include hand gestures as well as the more common biometrics of facial, voice and gait recognition.
“This, too, is all pattern recognition,” Govindaraju says, “but instead of letters, here, we’re trying to standardize gestures.
“It’s like developing an alphabet of gestures so machines can be programmed to do gesture recognition. The idea is to control objects on a monitor without technology,” he says.
Since its founding in 2003, CUBS has attracted approximately $10 million in federal and industry funding and has produced 17 doctoral-level graduates. The center advances machine learning and pattern recognition technologies to build engineered systems for both civilian and homeland security applications. It develops new methods for customizing devices that use data from physical biometrics, such as fingerprints, hand geometry and iris scans; behavioral biometrics, such as signature, voiceprint and gait; and chemical biometrics, such as DNA and body odor.
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB’s more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.
Ellen Goldbaum | Newswise Science News
Further information:
http://www.buffalo.edu
Further reports about: > ALPHA Business Solutions > Buffalo > CUBS > Recognition
Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington
An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy