Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop looking for parking spaces: magnetic field sensor can recognize vehicles

15.04.2010
When drivers look for unoccupied parking lots in front of large shopping malls, they often have to drive in circles and spend minutes. Researchers at Saarland University demonstrate how to make the process shorter.

They have developed easy-to-install magnetic field sensors. Unoccupied parking lot locations can be presented on a display. This monitor system has been applied at airports and it can also be used for improving city traffic guidance, so traffic jams before traffic lights will be reduced.

Researchers will demonstrate application possibilities from 19 to 23 April at Hannover Messe at Saarland Research stand (Hall 2, Stand C44).

Each vehicle slightly deforms its surrounding earth's magnetic field due to its metallic components and electronic devices. Magnetic field sensors can detect these small changes. Uwe Hartmann, Professor of Experimental Physics, Saarland University, explains: "These sensors are very sensitive and they can also recognize vehicles at a large distance. In contrast to surveillance cameras, which are influenced by fog or rain, magnetic field sensors are unaffected by weather conditions." One sensor plus necessary electronics is also comparatively cheap and its power consumption is low, so magnetic field sensors can be used in systems to monitor large areas.

In parking garages or on large surfaces in front of shopping malls, magnetic field sensors can precisely recognize locations of unoccupied parking lots. Large displays present the information to customers and there are still places for advertisements on displays. "Also traffic flow can be monitored by these sensors. They can be integrated into traffic light systems, because they can easily identify the vehicle speed", Hartmann says. The researcher sees an additional application in shipping. In this case, magnetic field sensors recognize whether a ship passes the door of a large sluice or not.

In a pilot project, on-road tests of magnetic field sensors have been carried out at Frankfurt, Saarbrücken-Ensheim and Thessaloniki airports. Hartmann warns, "Every year there are several hundred real or near accidents at airports worldwide, due to collisions of aircrafts with other aircrafts or ground vehicles." Magnetic field sensors will prevent those aircrafts from moving too close on their ways to taxiways. "Especially for areas between buildings, where ground radars are not effective or even impossible to achieve, magnetic field sensors can be equipped," the Saarbrücken physicist explains.

In the research project together with Fraport at Frankfurt airport, various applications of magnetic field sensors to maintain safety have been investigated. In this area, further development is still needed before market launch.

Corresponding person:

Prof. Dr. Uwe Hartmann
Chair for Nanostructure Research and Nanotechnology
Saarland University
Tel. +49 (0)681 / 302 3799
Tel. +49 (0)511 / 89 497101 (telephone in stand)
E-Mail: u.hartmann@mx.uni-saarland.de
Information for radio journalists: You can make telephone interviews in studio quality with researchers at Saarland University by using radio-ISDN-codec. Please directly contact the press office +49 (0)681/302-3601 for your interview wish.

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.uni-saarland.de/fak7/hartmann/
http://www.ismael-project.net
http://www.uni-saarland.de/pressefotos

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>